Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surfing a wake of light

07.07.2015

Researchers observe and control light wakes for the first time

When a duck paddles across a pond or a supersonic plane flies through the sky, it leaves a wake in its path. Wakes occur whenever something is traveling through a medium faster than the waves it creates -- in the duck's case water waves, in the plane's case shock waves, otherwise known as sonic booms.


This is an artistic rendition of the superluminal running wave of charge that excites the surface plasmon wakes.

Credit: Daniel Wintz, Patrice Genevet, and Antonio Ambrosio.

Wakes can exist wherever there are waves, even if those waves are light. While nothing travels faster than the speed of light in a vacuum, light isn't always in a vacuum. It is possible for something to move faster than the phase velocity of light in a medium or material and generate a wake. The most famous example of this is Cherenkov radiation, wakes produced as electrical charges travel through liquids faster than the phase velocity of light, emitting a glowing blue wake.

For the first time, Harvard researchers have created similar wakes of light-like waves moving on a metallic surface, called surface plasmons, and demonstrated that they can be controlled and steered. The discovery, published today in the journal Nature Nanotechnology, was made in the lab of Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at the Harvard John A. Paulson School of Engineering and Applied Science (SEAS).

"The ability to control light is a powerful one," said Capasso. "Our understanding of optics on the macroscale has led to holograms, Google Glass and LEDs, just to name a few technologies. Nano-optics is a major part of the future of nanotechnology and this research furthers our ability to control and harness the power of light on the nanoscale."

The creation and control of surface plasmon wakes could lead to new types of plasmonic couplers and lenses that could create two-dimensional holograms or focus light at the nanoscale.

Surface plasmons are confined to the surface of a metal. In order to create wakes through them, Capasso's team designed a faster-than-light running wave of charge along a one-dimensional metamaterial -- like a powerboat speeding across a lake.

The metamaterial, a nanostructure of rotated slits etched into a gold film, changes the phase of the surface plasmons generated at each slit relative to each other, increasing the velocity of the running wave. The nanostructure also acts like the boat's rudder, allowing the wakes to be steered by controlling the speed of the running wave.

The team discovered that the angle of incidence of the light shining onto the metamaterial provides an additional measure of control and using polarized light can even reverse the direction of the wake relative to the running wave -- like a wake traveling in the opposite direction of a boat.

"Being able to control and manipulate light at scales much smaller than the wavelength of the light is very difficult," said Daniel Wintz, a lead author of the paper and graduate student in the Capasso lab. "It's important that we not only observed these wakes but found multiple ways to control and steer them."

The observation itself was challenging, as "surface plasmons are not visible to the eye or cameras," said co-lead author Antonio Ambrosio of SEAS and the Italian Research Council (CNR). "In order to view the wakes, we used an experimental technique that forces plasmons from the surface, collects them via fiber optics and records the image."

This work could represent a new testbed for wake physics across a variety of disciplines. "This research addresses a particularly elegant and innovative problem in physics which connects different physical phenomena, from water wakes to sonic booms, and Cherenkov radiation," said Patrice Genevet, a lead author, formerly of SEAS, currently affiliated with the Singapore Institute of Manufacturing Technology.

###

This paper was co-authored by Alan She, of SEAS and Romain Blanchard, of SEAS and Eos Photonics.

This research was supported by the National Science Foundation and the Air Force Office of Scientific Research.

Leah Burrows | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>