Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Superconductor Research May Solve Key Problem in Physics

16.07.2010
Binghamton University physicist Michael Lawler and his colleagues have made a breakthrough that could lead to advances in superconductors. Their findings will be published this week in the prestigious British journal Nature.

The data Lawler analyzed have been available for several years, but have not been well understood until now. “The pattern looked so mysterious and interesting,” he said. “It’s so different from any other material we’ve ever looked at. Trying to understand what this data is really trying to tell us has been one of our big ambitions, and we think we have captured one of its essential ingredients.”

Lawler, a theoretical physicist, worked with physicists at Cornell University, Brookhaven National Laboratory and laboratories in Japan and Korea on this research. They found what may be the key to unlocking the secrets of the so-called “pseudogap phenomenon” in superconductors.


The “pseudogap phenomenon” is the remarkable vanishing of the low-energy electronic excitations in high-temperature superconductors. A material experiencing this rare phenomenon becomes mostly insulating but otherwise behaves like a superconductor. And because this can happen at room temperature, scientists believe it may be possible for superconductivity to exist at these temperatures.

Superconductors are materials – often but not always metals – that conduct electricity without resistance below a certain temperature. For decades, it was thought that these materials could conduct electricity only at temperatures far below freezing. In the last 20 years, however, scientists have discovered several compounds that superconduct at much higher temperatures.

In principle, a room-temperature superconductor could allow:
- Electricity to travel with zero energy loss from power plants to houses.
- High-speed trains to float on top of the superconductor.
- Cell phone towers that could handle many cell phone carriers in high-population areas.

"It’s one of the most interesting problems that we have in physics,” Lawler said. “I believe that having a challenge at that level can help produce breakthroughs in science.”

He and his colleagues found that the electronic states of two neighboring oxygen atoms in these superconductors are different from each other. Looking at the electronic structure, then, the physicists were able to observe a broken symmetry. “It is like the electronic states were stretched along the X-direction compared to the Y-direction,” Lawler said. “That the pseudogap phase has this order allows us to make the bold claim that it is actually a distinct phase of electronic matter.”

To understand this observation better, consider the phases of rod-like objects. Rod-like polymers have many more phases than the solid, liquid and gas phases of more ordinary atoms. At high temperatures, they are in a gas phase like such atoms. However, at lower temperatures, all the rods can point in one direction while still moving around freely like a gas or liquid. Physicists call this a “nematic phase.” The organization of the rods in this phase is similar to what the researchers observed in the electronic states associated with the pseudogap phenomena.

More phases of rod-like objects exist at lower temperatures until eventually the rods freeze into a crystal. Physicists call these intermediate phases "liquid-crystal phases." They are responsible for the liquid crystal displays commonly used in watches and televisions.

Lawler, who joined Binghamton’s faculty in 2008, earned his PhD at the University of Illinois at Urbana-Champaign and was a postdoctoral scholar at the University of Toronto. A self-described “pencil-and-paper theorist,” he is open to discovery in unexpected places. That was certainly the case with this project, as the inspiration for the data analysis came to him while he was shopping at Home Depot.

The researchers’ success, Lawler said, is owed to both the unusual data analysis—which is derived from radio technology – and the unique capabilities of his Cornell colleagues, who have a scanning tunneling microscope that enables them to look at single atoms while maintaining a large field of view.



Ryan Yarosh | Newswise Science News
Further information:
http://www.binghamton.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>