Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputing, experiment combine for first look at magnetism of real nanoparticle

03.02.2017

3-D atomistic structure of a real iron-platinum nanoparticle reveals previse magnetic properties

Barely wider than a strand of human DNA, magnetic nanoparticles -- such as those made from iron and platinum atoms -- are promising materials for next-generation recording and storage devices like hard drives. Building these devices from nanoparticles should increase storage capacity and density, but understanding how magnetism works at the level of individual atoms is critical to getting the best performance.


3-D visualization of chemically-ordered phases in an iron-platinum (FePt) nanoparticle. Using the Titan supercomputer at the Oak Ridge Leadership Computing Facility, researchers from Oak Ridge National Laboratory simulated the magnetic properties of strongly magnetic phases in the FePt nanoparticle using the precise 3-D atomistic structure obtained by researchers at University of California, Los Angeles and Lawrence Berkeley National Laboratory (Berkeley Lab).

Video credit to Colin Ophus, Berkeley Lab. Video courtesy of Nature.

However, magnetism at the atomic scale is extremely difficult to observe experimentally, even with the best microscopes and imaging technologies.

That's why researchers working with magnetic nanoparticles at the University of California, Los Angeles (UCLA), and the US Department of Energy's (DOE's) Lawrence Berkeley National Laboratory (Berkeley Lab) approached computational scientists at DOE's Oak Ridge National Laboratory (ORNL) to help solve a unique problem: to model magnetism at the atomic level using experimental data from a real nanoparticle.

"These types of calculations have been done for ideal particles with ideal crystal structures but not for real particles," said Markus Eisenbach, a computational scientist at the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility located at ORNL.

Eisenbach develops quantum mechanical electronic structure simulations that predict magnetic properties in materials. Working with Paul Kent, a computational materials scientist at ORNL's Center for Nanophase Materials Sciences, the team collaborated with researchers at UCLA and Berkeley Lab's Molecular Foundry to combine world-class experimental data with world-class computing to do something new--simulate magnetism atom by atom in a real nanoparticle.

Using the new data from the research teams on the West Coast, Eisenbach and Kent were able to precisely model the measured atomic structure, including defects, from a unique iron-platinum (FePt) nanoparticle and simulate its magnetic properties on the 27-petaflop Titan supercomputer at the OLCF.

Electronic structure codes take atomic and chemical structure and solve for the corresponding magnetic properties. However, these structures are typically derived from many 2-D electron microscopy or x-ray crystallography images averaged together, resulting in a representative, but not true, 3-D structure.

"In this case, researchers were able to get the precise 3-D structure for a real particle," Eisenbach said. "The UCLA group has developed a new experimental technique where they can tell where the atoms are--the coordinates--and the chemical resolution, or what they are -- iron or platinum."

The results were published on February 2 in Nature.

New and Improved Data

Using a state-of-the-art electron microscope at Berkeley Lab's Molecular Foundry, the Berkley Lab and UCLA teams measured multiple 2-D images from a single FePt nanoparticle at different orientations. UCLA researchers then used GENFIRE, a reconstruction algorithm they developed, to align 2-D images and reconstruct the 3-D atomic positions with cutting-edge precision. The nanoparticle they imaged was synthesized at the University of Buffalo.

"Our technique is called atomic electron tomography (AET) and enables the reconstruction of 3?D atomic structure in materials with 22-picometer precision," said Jianwei (John) Miao of UCLA. A picometer is one-trillionth of a meter. "Like a CT scan, you take multiple images from samples and reconstruct them into a 3-D image."

However, a CT scan is on the order of millimeters for medical diagnoses, whereas the UCLA team's AET technique is measuring atom locations on the order of hundreds of picometers, or the space between atoms.

The UCLA team also developed algorithms to trace the positions of about 6,500 iron and 16,500 platinum atoms, revealing 3-D chemical disorder and other defects at the atomic level.

"We find that the atomic structure is much more complicated than people thought," Miao said. "There were a lot of defects and imperfections in this iron-platinum nanoparticle."

One of the defining characteristics of the FePt nanoparticle is the grouping of iron and platinum atoms into regions or "grains" divided by boundaries. Researchers wanted to understand how magnetism would differ across boundaries given that the ratio and order of iron and platinum atoms changes from grain to grain. Ultimately, magnetism from grain to grain could influence the performance of a magnetic storage device.

"The computational challenge was to demonstrate how magnetism is ordered in the real particle and understand how it changes between boundaries of differently ordered grains," Eisenbach said.

A Supercomputing Milestone

Magnetism at the atomic level is driven by quantum mechanics -- a fact that has shaken up classical physics calculations and called for increasingly complex, first-principle calculations, or calculations working forward from fundamental physics equations rather than relying on assumptions that reduce computational workload.

For magnetic recording and storage devices, researchers are particularly interested in magnetic anisotropy, or what direction magnetism favors in an atom.

"If the anisotropy is too weak, a bit written to the nanoparticle might flip at room temperature," Kent said.

To solve for magnetic anisotropy, Eisenbach and Kent used two computational codes to compare and validate results.

To simulate a supercell of about 1,300 atoms from strongly magnetic regions of the 23,000-atom nanoparticle, they used the Linear Scaling Multiple Scattering (LSMS) code, a first-principles density functional theory code developed at ORNL.

"The LSMS code was developed for large magnetic systems and can tackle lots of atoms," Kent said.

As principal investigator on 2017, 2016, and previous INCITE program awards, Eisenbach has scaled the LSMS code to Titan for a range of magnetic materials projects, and the in-house code has been optimized for Titan's accelerated architecture, speeding up calculations more than 8 times on the machine's GPUs. Exceptionally capable of crunching large magnetic systems quickly, the LSMS code received an Association for Computing Machinery Gordon Bell Prize in high-performance computing achievement in 1998 and 2009, and developments continue to enhance the code for new architectures.

Working with Renat Sabirianov at the University of Nebraska at Omaha, the team also ran VASP, a simulation package that is better suited for smaller atom counts, to simulate regions of about 32 atoms.

"With both approaches, we were able to confirm that the local VASP results were consistent with the LSMS results, so we have a high confidence in the simulations," Eisenbach said.

Computer simulations revealed that grain boundaries have a strong effect on magnetism. "We found that the magnetic anisotropy energy suddenly transitions at the grain boundaries. These magnetic properties are very important," Miao said.

In the future, researchers hope that advances in computing and simulation will make a full-particle simulation possible -- as first-principles calculations are currently too intensive to solve small-scale magnetism for regions larger than a few thousand atoms.

Also, future simulations like these could show how different fabrication processes, such as the temperature at which nanoparticles are formed, influence magnetism and performance.

"There's a hope going forward that one would be able to use these techniques to look at nanoparticle growth and understand how to optimize growth for performance," Kent said.

###

Related Publication: Y. Yang, C-C. Chen, M.C. Scott, C. Ophus, R. Xu, A. Pryor, L. Wu, F. Sun, W. Theis, J. Zhou, M. Eisenbach, P.R.C. Kent, R. F. Sabirianov, H. Zeng, P. Ericus, and J. Miao, "Deciphering Chemical Order/Disorder and Material Properties at the Single-atom Level." Nature 542 (2017), doi: 10.1038/nature21042.

Oak Ridge National Laboratory is supported by the US Department of Energy's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

ORNL's Center for Nanophase Materials Sciences and Berkeley Lab's Molecular Foundry are DOE Office of Science User Facilities.

Media Contact

Katie Jones
joneske1@ornl.gov
865-241-2679

 @ORNL

http://www.ornl.gov 

Katie Jones | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>