Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-Sensors to Measure ‘Signature’ of Inflationary Universe

05.05.2009
What happened in the first trillionth of a trillionth of a trillionth of a second after the Big Bang?

Super-sensitive microwave detectors, built at the National Institute of Standards and Technology (NIST), may soon help scientists find out.

The new sensors, described today at the American Physical Society (APS) meeting in Denver, were made for a potentially ground-breaking experiment* by a collaboration involving NIST, Princeton University, the University of Colorado at Boulder, and the University of Chicago.

Although NIST is best known for earthbound measurements, a long-standing project at NIST’s Boulder campus plays a critical role in the study of the cosmic microwave background (CMB)—the faint afterglow of the Big Bang that still fills the universe. This project previously built superconducting amplifiers and cameras for CMB experiments at the South Pole, in balloon-borne observatories, and on the Atacama Plateau in Chile.

The new experiment will begin approximately a year from now on the Chilean desert and will consist of placing a large array of powerful NIST sensors on a telescope mounted in a converted shipping container.

The detectors will look for subtle fingerprints in the CMB from primordial gravitational waves—ripples in the fabric of space-time from the violent birth of the universe more than 13 billion years ago. Such waves are believed to have left a faint but unique imprint on the direction of the CMB’s electric field, called the “B-mode polarization.” These waves—never before confirmed through measurements—are potentially detectable today, if sensitive enough equipment is used.

“This is one of the great measurement challenges facing the scientific community over the next 20 years, and one of the most exciting ones as well,” said Kent Irwin, the NIST physicist leading the project.

If found, these waves would be the clearest evidence yet in support of the “inflation theory,” which suggests that all of the currently observable universe expanded rapidly from a subatomic volume, leaving in its wake the telltale cosmic background of gravitational waves.

“The B-mode polarization is the most significant piece of evidence related to inflation that has yet to be observed,” said Ki Won Yoon, a NIST postdoctoral scholar who will describe the project at the APS meeting. “A detection of primordial gravitational waves through CMB polarization would go a long way toward putting the inflation theory on firm ground.”

The data also could provide scientists with insights into different string theory models of the universe and other “unified” theories of physics.

These types of experiments can only be done by studying the universe as a whole, because the particles and electromagnetic fields at the beginning of the inflationary epoch were roughly 10 billion times hotter than the energies attainable by the most powerful particle colliders on Earth today. At this energy scale, fundamental forces now identified as separate are predicted to merge.

“The universe is a physics lab,” Irwin said. “If you look far away, you are actually looking back in time, potentially observing interactions that occurred at energy levels forever out of reach of terrestrial experiments.”

Recent studies of the CMB have focused on measuring slight spatial variations in temperature or power that existed about 380,000 years after the Big Bang. These patterns of radiation allow scientists to characterize the early distributions of matter and energy that evolved into the stars and galaxies of today.

By comparing the measurements to predictions made by various theories, scientists have added to the authoritative history of the universe, narrowing down, for instance, its age (13.7 billion years).

By contrast, the new NIST detectors are designed to measure not only temperature but also the polarization. The B-mode polarization signals may be more than a million times fainter than the temperature signals.

To detect such subtle patterns, the NIST detectors will collect significant amounts of radiation efficiently, and will be free of moving parts and traditional sources of systematic error, such as vibration and magnetic interference, Irwin said. In addition, advanced signal processing and error control will be needed.

The new sensors are prototypes for NIST polarimeter arrays that will greatly increase the sensitivity of future experiments by building thousands of detectors into monolithic units that can be deployed in cryogenic telescope cameras. The new NIST detectors may also have applications closer to home, such as in reducing glare in advanced terahertz imaging systems for detecting weapons and contraband.

As a non-regulatory agency of the U.S. Department of Commerce, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.

*Atacama B-mode Search (ABS): Scientific Motivations and Design Overview, Sheraton Denver Hotel, Plaza Court 2, Saturday, May 2, 2009, 1:30 – 1:42 p.m.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>