Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using the sun to illuminate a basic mystery of matter

08.07.2013
Antimatter has been detected in solar flares via microwave and magnetic-field data, according to a presentation by NJIT Research Professor of Physics Gregory D. Fleishman and two co-researchers at the 44th meeting of the American Astronomical Society's Solar Physics Division. This research sheds light on the puzzling strong asymmetry between matter and antimatter by gathering data on a very large scale using the Sun as a laboratory.

While antiparticles can be created and then detected with costly and complex particle-accelerator experiments, such particles are otherwise very difficult to study. However, Fleishman and the two co-researchers have reported the first remote detection of relativistic antiparticles — positrons — produced in nuclear interactions of accelerated ions in solar flares through the analysis of readily available microwave and magnetic-field data obtained from solar-dedicated facilities and spacecraft. That such particles are created in solar flares is not a surprise, but this is the first time their immediate effects have been detected.

The results of this research have far-reaching implications for gaining valuable knowledge through remote detection of relativistic antiparticles at the Sun and, potentially, other astrophysical objects by means of radio-telescope observations. The ability to detect these antiparticles in an astrophysical source promises to enhance our understanding of the basic structure of matter and high-energy processes such as solar flares, which regularly have a widespread and disruptive terrestrial impact, but also offer a natural laboratory to address the most fundamental mysteries of the universe we live in.

Electrons and their antiparticles, positrons, have the same physical behavior except that electrons have a negative charge while positrons, as their name implies, have a positive charge. This charge difference causes positrons to emit the opposite sense of circularly polarized radio emission, which Fleishman and his colleagues used to distinguish them. To do that required knowledge of the magnetic field direction in the solar flare, provided by NASA's Solar and Heliospheric Observatory (SOHO), and radio images at two frequencies from Japan's Nobeyama Radioheliograph. Fleishman and his colleagues found that the radio emission from the flare was polarized in the normal sense (due to more numerous electrons) at the lower frequency (lower energy) where the effect of positrons is expected to be small, but reversed to the opposite sense at the same location, although at the higher frequency (higher energy) where positrons can dominate.

Fleishman, who is affiliated with the NJIT Center for Solar-Terrestrial Research, worked with Alexander T. Altyntsev and Natalia S. Meshalkina, Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences. They are presenting their research in a paper titled "Discovery of Relativistic Positrons in Solar Flares" at the 44th meeting of the Solar Physics Division of the American Astronomical Society, held in Bozeman, Montana, July 8-11.

NJIT, New Jersey's science and technology university, enrolls approximately 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2012 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>