Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study on attosecond timescale casts new light on electron dynamics in transition metals

06.08.2019

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for Computational Quantum Physics at the Flatiron Institute (USA), used state-of-the-art attosecond transient absorption spectroscopy (ATAS), an ultrafast method for examining electronic motion, to study the collective behavior of electrons in the transition metals Titanium (Ti) and Zirconium (Zr) and uncover the interplay between light absorption and electronic screening.


Light-induced electron localization dynamics in transition metals were investigated with attosecond transient absorption spectroscopy and first-principles simulations.

Mikhail Volkov, ETH

Transition metals like these are key constituents of many materials with unconventional properties, for example high-temperature superconductors.

Those results are interpreted through extensive first-principles time-dependent calculations. The team’s work yields new insights into the role of coupled-electron dynamics in these systems.

In metals, a part of the electrons is fully delocalized apart from their parent ions and these can freely move in solids. They are so-called free electrons and make metals conductive. In contrast to these free electrons, however, some other electrons are strongly localized on ions in transition metals.

They are forced into certain areas, resulting in the electron density confinement and strong electron coupling that are key to various interesting phases of matter, such as high-Tc superconductivity, a charge density wave phase, and a metal-insulator transition (so-called Mott transition).

The challenge is to generate and even control such interesting phases of matter in ultrafast ways by using light to steer the electron localization. The only limitation would be the timescale of the thermalization where the controllability of electrons is disturbed by their environment.

Using ATAS, the researchers found an ultrafast modification of optical absorption in transition metals under an intense laser pulse at the attosecond timescale. They demonstrated that the transient absorption originates from ultrafast d-electron localization due to the pump pulse. They observed that transient absorption phenomena are robust against variation of experimental parameters, such as sample thickness, surface oxidation state and pump photon energy.

Furthermore, based on the state-of-the-art first-principles calculations, they unraveled that the ultrafast absorption change originates from the modification of electronic screening effects in the sub-nanometer scale through the attosecond electron-localization.

This work has revealed a novel possibility for the ultrafast manipulation of phases of matter on its natural timescale. Its results represent a major step forward in understanding light-induced electron dynamics in matter on the attosecond timescale. They provide the fundamental knowledge needed for the development of future optoelectronic devices, energy-efficient electronics, magnetic memory devices, spintronics and new types of solar cells.

Wissenschaftliche Ansprechpartner:

Mikhail Volkov, lead author: volkovm@phys.ethz.ch
Shunsuke Sato, MPSD: shunsuke.sato@mpsd.mpg.de

Originalpublikation:

https://www.nature.com/articles/s41567-019-0602-9

Weitere Informationen:

https://www.mpsd.mpg.de/537762/2019-07-transitionmetals-sato

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie
Further information:
http://www.mpsd.mpg.de

More articles from Physics and Astronomy:

nachricht A one-way street for light
14.11.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht TU Graz researchers develop new 3D printing for the direct production of nanostructures
14.11.2019 | Technische Universität Graz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>