Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students from the UAB and the UPC have been chosen to carry out a scientific experiment in microgravity with the ESA

26.01.2009
Sergi Vaquer, Doctor of Medicine from the UAB, and Arnau Rabadán, an industrial engineering student from the UPC, together with three teams from Norway, Germany and the United Kingdom, will participate in the ESA “Fly your Thesis!” program, an opportunity for PhD and master’s degree students from across Europe to design, build, and carry out a scientific experiment in microgravity.

In the final phase of the competition there were 16 research teams from different European universities who presented their projects at the ESA European Astronaut Centre, in Cologne (Germany), in December.

Next autumn the young researchers from the UAB and the UPC will participate in a campaign of three parabolic flights aboard the Airbus A300 ZERO-G that some astronauts use as part of their training. During the flights the aircraft accelerates as it gains altitude, then the engines are reduced to a minimum for 20 seconds while the plane traces a parabola in freefall.

For these 20 seconds, conditions close to zero gravity are attained within the cabin. These maneuvers are repeated up to 30 times during a flight, so that after completing the three flights in the campaign, the researchers will have had the opportunity to experiment with microgravity over a considerable amount of time.

The experiment is being coordinated by Sergi Vaquer and is called the ABCtr MicroG project. It will study the behavior of ABC transporters, biological agents that are responsible for removing drugs and other toxins from human cells, under microgravity conditions. For this purpose, the UPC and UAB researchers have developed a special protocol to enable the activity of these molecules to be measured very accurately during the 20 seconds of microgravity in each of the 30 parabolas on a parabolic flight. Arnau Rabadán is in charge of the technical part of the experiment that involves designing a mechanism to mix the biomedical fluid and the ABC transporters inside a syringe, activating the chemical reaction. All of this must be done at 37ºC, that is, human body temperature. After 20 seconds the system will introduce a liquid into the syringe to freeze the mixture so that it will not be affected by gravity and the experiment will be repeated in the next parabola.

The mechanism will be regulated by a control system, since the conditions for the experiment and the quantity of liquids to be injected must be precisely set. The control system includes active elements, such as the motor to drive the syringes, and also supervisory elements, such as the censors to regulate the temperature of the syringe where the mixing is done.

The engineering, production and flight preparation activities will be supervised by Felip Fenollosa, a lecturer at the Department of Mechanical Engineering of the UPC and co-director of the CIM Foundation. The CIM Foundation is a technological reference center of the UPC in the field of production technologies, and the design and building of the mechanism will now begin there. This will be based on a prototype of the equipment that was developed in 2008 at the CIM Foundation by Rosa Pàmies, a lecturer in mechanical engineering at the UPC.

Improving medical treatments
The results will be useful in improving medical treatments for astronauts but they will also assist with a better understanding of the biological agents involved in the assimilation of drugs in general and the action of the transporters in illnesses such as cancer and AIDS.

Sergi Vaquer has worked as a crew physician at the Crew Medical Support Office of the ESA European Astronaut Centre, Cologne, and is currently a resident physician at the Hospital Parc Taulí in Sabadell (associated with the UAB) and a researcher at the Municipal Medical Research Institute (IMIM) of the Hospital del Mar. Arnau Rabadán is studying the Diploma in Mechanical Engineering at the College of Industrial Engineering of Barcelona (EUETIB) of the UPC, and the scientific equipment for this experiment will be the subject of his final thesis. He is currently on a research scholarship from the CIM Foundation.

Other projects selected
The other projects selected by the ESA are Complex, presented by a team of four students from the Norwegian University of Science and Technology, in Trondheim (Norway), which will study the flow birefringence of a solution of clay particles in salty water, enabling them to better understand the self-organization of these small particles; the Dust Side of the Force presented by four students from the Institute of Planetology at the University of Münster (Germany), which aims to study greenhouse and thermophoretic effects, which can lift particles off the ground in low gravity conditions and are thought to be important in the formation of planets and the generation of dust storms on Mars; and AstEx, presented by two students from the Open University (United Kingdom) and from the University of Nice-Sophia Antipolis (France), which will investigate the behavior of a granular material under shear stress, with the possibility of using the results in the design of future missions to collect samples from asteroids.

Rossy Laciana | alfa
Further information:
http://www.upc.edu
http://www.upc.edu/saladepremsa

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>