Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018

What happens when you excite novel assemblies of nanomaterials using structured light? Joint research between Tampere University of Technology (TUT) (Finland) and University of Tübingen (Germany) has shown that carefully structured light and matching arrangements of metal nanostructures (so-called "plasmonic oligomers") can be combined to alter the properties of the generated light at the nanometer scale. In particular, the teams have shown that the efficiency of nonlinear optical fields (e.g., second-harmonics) generated from the oligomers is strongly influenced by how the constituents of the oligomer are arranged in space and how these constituents are illuminated by structured light.

Nonlinear optical processes provide the basis for important functionalities in photonics, such as frequency conversion of light, generation of ultrashort light pulses, as well as optical processing and manipulation. Further advancement of this field is expected to be fueled by the synthesis of novel nanomaterials with tailorable optical properties and by new approaches for coupling light efficiently into such nanomaterials. For the latter purpose, light beams with unconventional polarizations, so-called structured light, are expected to be crucial.


a) Plasmonic gold oligomer consisting of nanorods that are azimuthally arranged. The oligomers were fabricated at the University of Tübingen. b) Intensity profile of the azimuthally-polarized cylindrical vector beam used in the experiments. c) Nonlinear optical microscope equipped with cylindrical vector beams at the Nonlinear Optics Group, Laboratory of Photonics at TUT.

Credit: Laboratory of Photonics at TUT

In order to demonstrate such capabilities, the authors designed and fabricated assemblies of gold nanorods with well-defined dimensions and orientations such that their overall size matches the size of a focused laser beam, i.e., about 1 micron.

To investigate the nonlinear response of such plasmonic oligomers, the authors used a novel optical microscopy technique, which is equipped with polarization-structured beams. More specifically, the authors used radially and azimuthally polarized cylindrical vector beams that exhibit non-uniform states-of-polarization across the cross-section of the beam.

"Previous works on nonlinear optical effects in plasmonic oligomers have been based on using plane waves or focused beams with homogenous, i.e., uniform, states of polarizations. Here, we used a nonlinear optical microscope equipped with doughnut-shaped polarization-structured beams to study such oligomers. We found that the overall efficiency of nonlinear optical effects from these structures is strongly affected by the spatial structure of the beam and collective interactions supported by the oligomer. We hope that our work will further spark interest in studying and manipulating nonlinear optical effects in novel nanoscale systems using unconventional excitation beams." says Dr. Godofredo Bautista, postdoctoral researcher at the Nonlinear Optics Group of the Laboratory of Photonics at TUT and co-corresponding author of the work.

Professor Martti Kauranen, head of the Nonlinear Optics Group and Laboratory of Photonics, who supervised the research at TUT, states that "Beyond the nonlinear effects studied in the present work, our results show in general how important it is to tailor the incident optical beam in order to couple light efficiently into complex nanostructures".

Professor Monika Fleischer, head of the Plasmonic Nanostructures Group at the University of Tübingen and co-corresponding author, who supervised the research at the University of Tübingen, adds: "Nanotechnology provides high-precision tools that allow us to tailor arrangements of metallic nanostructures, also called optical antennas, with pre-designed properties. This way specific interactions with non-conventional laser beams can be targeted, and overall signal intensities may be maximized."

The researchers believe that their results will be useful in the design and implementation of new kinds of optical components and characterization techniques that utilize unconventional optical fields.

###

This work was funded by the Academy of Finland (267847 and 287651), TUT Investment funding for Optics and Photonics and COST Action MP1302 Nanospectroscopy.

Paper published in Nano Letters: Godofredo Bautista, Christoph Dreser, Xiaorun Zang, Dieter P. Kern, Martti Kauranen, and Monika Fleischer, "Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers," Nano Lett., 18(4), 2571-2580 (2018)

Link: https://pubs.acs.org/doi/10.1021/acs.nanolett.8b00308

Inquiries:
Dr. Godofredo Bautista, Laboratory of Photonics, Tampere University of Technology, Phone: +358-40-1981011, Email: godofredo.bautista@tut.fi
Prof. Martti Kauranen, Laboratory of Photonics, Tampere University of Technology, Phone: +358-40-7733065, Email: martti.kauranen@tut.fi
Prof. Monika Fleischer, Plasmonic Nanostructures Group, Institute for Applied Physics, Eberhard Karls Universität Tübingen, Phone: +49 (0)7071 29 76336, Email: monika.fleischer@uni-tuebingen.de

Media Contact

Godofredo Bautista
godofredo.bautista@tut.fi
358-401-981-011

 @SuomenAkatemia

http://www.aka.fi/eng 

Godofredo Bautista | EurekAlert!

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>