Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong Magnetic Fields Might Have Been Created Shortly after the Big Bang

09.09.2011
Astrophysicists demonstrate magnetic field amplification with three-dimensional computer simulations

Strong magnetic fields in the Universe apparently date back to the period shortly after the Big Bang.

This was recently demonstrated with the aid of three-dimensional computer simulations by an international team of researchers headed by Heidelberg astrophysicist Dr. Christoph Federrath at the Ecole Normale Supérieure in Lyon (France) and the universities of Heidelberg, Hamburg and Göttingen. Their simulations show that magnetic fields are amplified by turbulent flows even under extreme physical conditions, suggesting that such fields may well have been created at an early stage in the formation of the Universe. The findings will be published in “Physical Review Letters” on 9 September 2011.

Both the gas between the stars of a galaxy and the matter between galaxies are magnetised. However, little is known so far about how these magnetic fields, which are observable by telescopes, actually came into existence. Now, the international research team has proposed an answer: the underlying mechanism is the amplification of initially weak magnetic fields by turbulent flows such as found in the interior of the Earth and the Sun. Previous studies have demonstrated that such turbulent flows even existed in the early Universe. “This turbulence makes magnetic fields grow exponentially”, says Dr. Federrath. “As our computer-based models have shown, such growth is possible even under the most unfavourable physical conditions, for example immediately after the Big Bang, when the first stars in the Universe were forming.”

In their work, the astrophysicists use three-dimensional computer simulations performed on more than 32,000 processors in parallel. They demonstrate how magnetic field lines are stretched, twisted and folded by turbulent flows. The energy required for these processes is extracted from the turbulence and converted into magnetic energy. Much as electricity generates a magnetic field through the motion of charge carriers, charges themselves are subject to a force when they move in a magnetic field. “The interaction between turbulent energy and magnetic field can amplify an initially weak magnetic field until it is so strong that it changes the dynamics of the turbulent flow that originally created it”, says Dr. Federrath, who works at Heidelberg University’s Institute of Theoretical Astrophysics. “This physical process resembles the generation of electromagnetic energy in a bicycle dynamo, which is why it is also referred to as ‘turbulent dynamo’.”

The scientists hope to learn more about the dynamic impact of magnetic fields and their role in the formation of the first stars and galaxies. „In particular, the presence of strong magnetic fields might be responsible for ejections of matter, so-called jets, from the first stars in the Universe", Dr. Federrath explains. Other researchers in the project besides Dr. Christoph Federrath include Prof. Dr. Gilles Chabrier (Lyon), Jennifer Schober (Heidelberg), Prof. Dr. Robi Banerjee (Hamburg), Prof. Dr. Ralf S. Klessen (Heidelberg) and Prof. Dr. Dominik R. G. Schleicher (Göttingen).

For more information, go to http://www.ita.uni-heidelberg.de/~chfeder/pubs/dynamo-prl/dynamo_prl.shtml

Original publication
C. Federrath, G. Chabrier, J. Schober, R. Banerjee, R. S. Klessen, and D. R. G. Schleicher. Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows. Phys. Rev. Lett. 107, 114504 (2011), doi: 10.1103/PhysRevLett.107.114504
Contact
Dr. Christoph Federrath
Centre for Astronomy
Institute of Theoretical Astrophysics
Phone: +49 6221 54 4837
federrath@uni-heidelberg.de
Communications and Marketing
Press Office, phone +49 6221 54 2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de
http://www.ita.uni-heidelberg.de/~chfeder/pubs/dynamo-prl/dynamo_prl.shtml

More articles from Physics and Astronomy:

nachricht Rapid water formation in diffuse interstellar clouds
25.06.2018 | Max-Planck-Institut für Kernphysik

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>