Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Stress Tests’ Probe Nanoscale Strains in Materials

27.11.2008
Researchers at the National Institute of Standards and Technology (NIST) have demonstrated their ability to measure relatively low levels of stress or strain in regions of a semiconductor device as small as 10 nanometers across.

Their recent results* not only will impact the design of future generations of integrated circuits but also lay to rest a long-standing disagreement in results between two different methods for measuring stress in semiconductors.

Mechanical stress and strain in semiconductors and other devices is caused by atoms in the crystal lattice being compressed or stretched out of their preferred positions, a complex—and not always harmful—phenomenon. Stress in the underlying structure of light-emitting diodes and lasers can shift output colors and lower the device’s lifetime. Stress in microelectromechanical systems can lead to fracture and buckling that also truncates their lifespan.

On the other hand, stress is deliberately built into state-of-the-art microcircuits because properly applied it can increase the speed of transistors without making any other changes to the design. “Stress engineering has allowed the semiconductor industry to increase the performance of devices well beyond what was expected with the current materials set,” said NIST research physicist Robert Cook, “thus avoiding the significant engineering problems and expense associated with changing materials.”

Both the good and the bad stresses need to be measured, however, if they’re to be controlled by device designers. As the component size of microcircuits has become smaller and smaller, this has become more difficult—particularly since two different and widely used methods of stress measurement have been returning disparate results. One, electron back scattered diffraction (EBSD), deduces underlying stress by observing the patterns of electrons scattered back from the crystal planes. The other, confocal Raman microscopy (CRM), measures minute shifts in the frequency of photons that interact with the atomic bonds in the crystal—shifts that change depending on the amount of stress on the bond. The NIST team used customized, highly sensitive versions of both instruments in a series of comparison measurements to resolve the discrepancies.

The key issue, they found, was depth of penetration of the two techniques. Electron beams sample only the top 20 or 30 nanometers of the material, Cook explained, while the laser-generated photons used in CRM might penetrate as deep as a micrometer or more. The NIST researchers found that by varying the wavelength of the Raman photons and positioning the focus of the microscope they could select the depth of the features measured by the Raman technique—and when the CRM was tuned for the topmost layers of the crystal, the results were in close agreement with EBSD measurements.

The NIST instruments also demonstrate the potential for using the two techniques in combination to make reliable, nanoscale measurements of stress in silicon, which enables device developers to optimize materials and processes. EBSD, although confined to near-surface stress, can make measurements with resolutions as small as 10 nanometers. CRM resolution is about 10 times coarser, but it can return depth profiles of stress.

* M.D. Vaudin, Y.B. Gerbig, S.J. Stranick and R.F. Cook. Comparison of nanoscale measurements of strain and stress using electron back scattered diffraction and confocal Raman microscopy. Applied Physics Letters 93, 193116. (2008)

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Illinois team finds Wigner crystal -- not Mott insulator -- in 'magic-angle' graphene
25.09.2018 | University of Illinois College of Engineering

nachricht Measuring Smallest Magnetic Fields in the Brain Using Diamond and Laser Technology
25.09.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Establishing metastasis

25.09.2018 | Health and Medicine

Artificial intelligence to improve drug combination design & personalized medicine

25.09.2018 | Health and Medicine

Small modulator for big data

25.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>