Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strengthening fragile forests of carbon nanotubes for new MEMS applications

29.10.2012
Microelectromechanical systems (MEMS) are incredibly tiny devices, often built on the scale of millionths of a meter. Conventional MEMS structures tend to be made out of silicon-based materials familiar to the micro-electronics industry, but this ignores a suite of useful materials such as other semiconductors, ceramics, and metals.

By using a variety of materials not commonly associated with MEMS technology, a team from Brigham Young University (BYU) in Provo, Utah has created stronger microstructures that can form precise, tall and narrow 3-D shapes – characteristics that were never before possible in MEMS. The researchers will present their latest findings at the AVS 59th International Symposium and Exhibition, held Oct. 28 – Nov. 2, in Tampa, Fla.

To break the MEMS materials barrier, the researchers devised a new production process called carbon nanotube templated microfabrication (CNT-M). It uses patterned, vertically aligned carbon nanotube arrays called forests as a 3-D microfabrication scaffold. With this scaffold, the researchers can create precise, tall and fine-featured microstructures. But the forests are extremely fragile. To make them hardier the team replaced the air spaces between the carbon nanotubes with a filler material by atomistic deposition.

The team has used their new CNT-M framework to fabricate metal components from tungsten, molybdenum and nickel. These metals provide desirable properties for MEMS applications and components, including high electrical and thermal conductivity, high melting temperatures, resistance to corrosion, low thermal expansion and hardness.

The BYU team's advances open the door for manipulating matter in novel ways that optimize efficiency, performance and cost across a range of fields, including medicine, imaging, computing, materials synthesis, chemical synthesis, and printing. Most biological and biomedical processes occur at the nanoscale. Developing models and templates at this scale enables scientists to interact with, control and leverage the unusual physical, chemical, mechanical, and optical properties of materials in naturally tiny systems.

Already, the BYU researchers have successfully used their new technique to make chemical detection devices that can validate chemical reactions during pharmaceutical production. Team member Robert C. Davis, PhD , imagines that one day CNT-M might even play a role in devising new longer-lasting batteries.

MORE INFORMATION ABOUT THE AVS 59th INTERNATIONAL SYMPOSIUM & EXHIBITION
The Tampa Convention Center is located along the Riverwalk in the heart of downtown Tampa at 333 S. Franklin St., Tampa, Florida, 33602.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS59/pages/greetings.html

Technical Program: http://www.avssymposium.org/

Housing and Travel Information: http://www2.avs.org/symposium/AVS59/pages/housing_travel.html

PRESS REGISTRATION

The AVS Pressroom will be located in the Tampa Convention Center. Your complimentary media badge will allow you to utilize the pressroom to write, interview, collect new product releases, review material, or just relax. The media badge will also admit you, free of charge, into the exhibit area, lectures, and technical sessions, as well as the Welcome Mixer on Monday evening and the Awards Ceremony and Reception on Wednesday night. Pressroom hours are Monday-Thursday, 8-5 p.m.

To register, please contact:

Della Miller, AVS
E-mail: della@avs.org
This news release was prepared for AVS by the American Institute of Physics (AIP).

ABOUT AVS

Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>