Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storms on Uranus, Neptune Confined to Upper Atmosphere

21.05.2013
Shedding light on a long-standing mystery surrounding the cloudy worlds of Uranus and Neptune, scientists at the UA’s Lunar and Planetary Lab have discovered that the massive jet streams and weather phenomena associated with them appear to be ripples on the surface rather than extending deep into the planets' interior.
Similar to the giant gas planets Jupiter and Saturn, their smaller cousins, Uranus and Neptune, have long been known to harbor swirling clouds and violent winds churning up their atmospheres. Massive bands of jet streams encircling the entire planet have been observed in both cases.

But given that Uranus' atmosphere is believed to be thick enough to swallow the entire Earth, it was not known just how far the weather perturbations reach into the planet's interior.

Now a team of planetary scientists with the University of Arizona's Lunar and Planetary Laboratory, including William Hubbard and Adam Showman, has published the results of new analyses that put an upper limit to the weather zone on Uranus and Neptune.

According to their data, reported in the journal Nature, the atmosphere on both planets goes from screaming winds of infernal violence to dead-quiet at a much shallower depth than previously thought.

"Our analyses show that the dynamics are confined to a thin weather layer no more than about 680 miles deep," said Hubbard. "This number is an upper limit, so in reality, it is possible that the atmosphere quiets down even shallower than that."

For the study, which was led by Yohai Kaspi, a planetary researcher at the Weizmann Institute of Science in Rehovot, Israel, the team applied computer simulations and numerical analyses to data collected by the spacecraft Voyager 2 during a fly-by in 1989.

Without a means to probe the atmosphere of gas giants directly, the researchers had to rely on indirect measurements to gather clues about weather patterns on the two planets.

"For Neptune and Uranus, the only spacecraft data we have were taken with Voyager 2's equipment more than 20 years ago, and we won't be able to get anything that lives up to today's standards anytime soon," explained Hubbard, whose research focuses on studies of the structure and evolution of Jupiter, Saturn and extra solar giant planets.

Instead, the team used deep circulation theories developed by Showman and Kaspi to predict what the gravitational fields of Neptune and Uranus should look like. This method takes advantage of the fact that large weather perturbations in the atmospheres of giant planets modify their gravitational fields in a way that allows researchers to draw conclusions about the nature and extent of those weather phenomena.

"Basically, by applying these newly developed theories, we are able to tease out new information from old data," Hubbard said. "The reason we can constrain the weather to the upper 680 miles or so is that we would see a much stronger distortion of the gravitational field if the weather extended much deeper."

Hubbard said he made calculations back in 1989, at the time of Voyager 2's encounter with Neptune, "but today of course we have much better methods than two decades ago, so we can put a more accurate constraint on these phenomena than I was able to at the time."

As a co-investigator on NASA's Juno mission currently en route to Jupiter, Hubbard develops tools for analyzing the gravity signal from the giant gas planet with the famous Red Spot. Hubbard showed how high-precision gravity data from a close-range orbiter of Jupiter can be used to determine the depths to which Jupiter's extraordinary zonal wind patterns penetrate.

Juno's goal is to study the interior composition of the largest planet in our system, which is thought to have formed before the other planets and hold answers to many unsolved questions about the formation of our solar system.

"We are going to get similar data for Jupiter and Saturn, but in much higher quality than what we have from Voyager 2," he said, and also with higher precision than anything that has been done on Jupiter so far."

Using two radio receivers, one on the spacecraft and one on Earth, locked in synchrony, Juno will be able to measure gravity with unprecedented accuracy, Hubbard explained.

Unlike the jet streams on Uranus and Neptune, Hubbard said the winds are much more subtle on Jupiter and Saturn.

"When we start getting detailed data from Juno, we are going to use those methods to apply to what we see on Jupiter and Saturn," he said. "We want to see how deep these weather phenomena go on those planets."

Hubbard explained that researchers believe the atmospheric disturbances are more numerous on Jupiter and Saturn but less strong compared to Uranus and Neptune, for reasons that may have to do with the planets' different compositions and their angles between the magnetic fields and rotational axis.

"In the case of Earth, our atmosphere is very thin and almost negligible from the point of view of gravity," Hubbard explained. "One would need extremely sensitive measurements to see the effects of the atmosphere on the Earth's gravitational field."

"In the case of giant gas planets, we are talking about deep, hydrogen-dominated atmospheres that are much denser, more like an ocean than an atmosphere. There is so much mass involved that it leaves a much more visible signature on the gravity."

In this artist's impression of Voyager 2's 1989 encounter with Neptune, the gas giant's Great Dark Spot is visible in the distance. Thought to be a hole in the giant planet's cloud cover, winds in that area have been clocked at 1,500 miles per hour, the fastest in the solar system (not the subject of this study). (Photo: NASA)

Extra Info

UA planetary researcher Erich Karkoschka assembled observational data into this animated video showing the swirling features in Neptune's atmosphere.

In another video, he combined images of Uranus taken with the Hubble Space Telescope into a stunning animation revealing the planet's seasonal changes, wobbling rings and circling moons.

Contacts

Researcher Contact:
William Hubbard
Lunar and Planetary Laboratory
520-621-6942
hubbard@lpl.arizona.edu

Media Contact:
Daniel Stolte
University Communications
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht A one-way street for light
14.11.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht TU Graz researchers develop new 3D printing for the direct production of nanostructures
14.11.2019 | Technische Universität Graz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>