Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar Still Births: Researchers reveal brown dwarfs as third class of celestial bodies after stars and planets

22.08.2008
The systematics of celestial bodies apparently needs to be revised. Researchers at the Argelander Institute of Astronomy of the University of Bonn have discovered that brown dwarfs need to be treated as a separate class in addition to stars and planets.

To date they had been merely regarded as stars which were below normal size. However, they may well be stellar ‘miscarriages’. The astronomers are publishing their results in the journal Monthly Notices of the Royal Astronomical Society. A preview can be seen at http://arxiv.org/abs/0808.2644.

Brown dwarfs (or BDs) are what scientists call objects which populate the galaxies apart from the stars. Unlike the latter, they cannot develop high-yield hydrogen fusion as in the interior of our sun due to their low mass (less than about 8% of the sun’s mass). But in addition to this brown dwarfs and stars also seem to be different in their ‘mating behaviour’.

Stars often occur in pairs, which dance around each other. The intimacy which this dance involves, however, varies a great deal: sometimes the gap is smaller than one radius of the Earth’s orbit (also known as Astronomical Unit or AU). However, the two partners can also keep apart by as much as many thousands of AUs. ‘Things are different with brown dwarfs,’ astrophysicist Ingo Thies of the Bonn Argelander Institute of Astronomy explains. ‘The orbital radiuses of BD pairs are cut off above about 15 AUs; BD pairs with greater distances are the exception.’

What is more, there are hardly any mixed pairs consisting of suns and brown dwarfs – far fewer than expected. This phenomenon is also known as brown dwarf desert. ‘According to the classical model there ought not to be these differences,’ Professor Pavel Kroupa of the Argelander Institute explains. ‘According to this both brown dwarfs and stars ought to emerge from interstellar clouds of gas which become concentrated because of the attraction of their mass. But if this was the case, these celestial bodies should behave in similar ways.’

Despite this contradiction the astronomic community has previously stuck to the theory of a joint origin. However, Ingo Thies and Pavel Kroupa have now shown empirically for the first time that brown dwarfs must be seen as a class of objects which is separate from the stars. ‘For this we analysed the masses of newly born stars,’ Ingo Thies explains. ‘This revealed a jump in the distribution of mass which makes the division in the stellar population apparent.’

Death of an embryonic star

But how are brown dwarfs born? As long ago as 2001 the Danish researcher Bo Reipurth, Britain’s Cathie Clarke and the Spanish astronomer Eduardo Delgado-Donate had the idea that brown dwarfs could be interpreted as stellar ‘miscarriages’: a system consisting of three embryonic stars disintegrates due to the mutual attraction of masses, and the lightest object is catapulted out of the system. The physical mechanism itself has long been known: even the US light space probes Pioneer and Voyager were hurled off onto their voyage of no return by the planet’s gravity.

Another possibility would be that brown dwarfs form in the outermost regions of emergent stars and become separated from them. This can, for example, occur as the result of a close encounter with a third star. Since almost all stars are born in star clusters, such encounters are not unusual. It is also possible that both scenarios of cosmic miscarriages take place.

Both theories predict that brown dwarfs can only emerge at the birth of stars – similar to the situation with planets, incidentally. Thus there are presumably three quite different celestial bodies: planets, brown dwarfs and stars.

Prof. Dr. Pavel Kroupa | alfa
Further information:
http://www.uni-bonn.de

More articles from Physics and Astronomy:

nachricht Liquid crystals in nanopores produce a surprisingly large negative pressure
25.04.2019 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht New robust device may scale up quantum tech, researchers say
25.04.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>