Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar Astronomers Answer Question Posed by Citizen Scientists: ‘What Are Yellowballs?’

29.01.2015

Some four years ago, a citizen scientist helping the Milky Way Project study Spitzer Space Telescope images for the tell-tale bubble patterns of star formation noticed something else.

“Any ideas what these bright yellow fuzzy objects are?” the volunteer wrote on a project message board.


Image courtesy of NASA/JPL-Caltech.

Citizen scientists working with the Milky Way Project noticed and tagged the "yellowballs" in the middle of this image from the Spitzer Space Telescope.

Well, that sparked some discussion among the professional astronomers on the Milky Way Project and eventually led to a study of the compact objects now known as “yellowballs.” A paper just published by The Astrophysical Journal (“The Milky Way Project: What are Yellowballs?”) answers some questions about the 900 yellowballs tagged by citizen scientists.

Charles Kerton, an Iowa State University associate professor of physics and astronomy and a member of the Milky Way Project science team, is first author of the paper. Co-authors are Grace Wolf-Chase of the Adler Planetarium in Chicago and the University of Chicago; Kim Arvidsson, formerly an Iowa State doctoral student and now of Schreiner University in Kerrville, Texas; and Chris Lintott and Robert Simpson of the University of Oxford in the United Kingdom.

“In this paper, through a combination of catalog cross-matching and infrared color analysis, we show that yellowballs are a mix of compact star-forming regions,” the astronomers wrote.

And, they wrote, the project demonstrates “the serendipitous nature of citizen science efforts” because Milky Way Project volunteers “went beyond their assigned tasks and started tagging and discussing” the yellowballs.

The Milky Way Project is part of the Zooniverse, a collection of Internet-based science projects that ask for the public’s help looking through images and other data.

The Milky Way Project asks people to study tens of thousands of Spitzer’s infrared images. People are asked to circle and classify various objects, including bubbles of gas and dust blown by the radiation and charged particles from bright young stars.

To date, citizen scientists have made nearly 1.5 million classifications for the project.

Kerton said all of that classifying is helping astronomers study and map star formation within the galaxy.

But the project took a little detour when citizen scientists noticed yellow objects along the rims of some bubble formations. (It should be noted the yellowballs found in Spitzer’s infrared images aren’t really yellow. When the images are made, various colors are assigned to represent different wavelengths of infrared light. The yellow color on the images highlights where infrared emission from molecules (colored green) and from hot dust (colored red) completely overlap.)

The astronomers began studying those yellowballs by cross-matching them against existing catalogs of space objects. They also studied the luminosity and physical sizes of 138 of the yellowballs.

Kerton said the researchers found most of the yellowballs were located in regions of the galaxy containing dense gas. They also found that yellowball luminosity was consistent with the luminosity expected for a collection of newly formed massive stars.

They’ve concluded there’s an early “yellowball stage” in the formation of stars 10 to 40 times as massive as our sun. The yellowballs are considered very young versions of the bubble formations.

“All massive stars probably go through this yellowball stage,” Kerton said. “The most massive stars go through this stage very early and quickly. Less massive stars go through this stage more slowly.”

The astronomers also wrote that further studies of yellowballs will improve our understanding of how regions of massive star formation grow from early compact stages to more evolved and bubble-like structures.

But those findings aren’t the only highlight of this particular study, Kerton said.

“The fun thing about this study is the involvement of the citizen scientists,” he said. “This is a nice example of people looking at something in the universe and saying, ‘That’s different,’ and then passing it on to professional astronomers.”

Contact Information
Charles Kerton, Physics and Astronomy, 515-294-2298, kerton@iastate.edu

Charles Kerton | newswise
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Researchers put a new spin on molecular oxygen
17.07.2019 | Osaka University

nachricht Harvesting energy from the human knee
17.07.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>