Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar Astronomers Answer Question Posed by Citizen Scientists: ‘What Are Yellowballs?’

29.01.2015

Some four years ago, a citizen scientist helping the Milky Way Project study Spitzer Space Telescope images for the tell-tale bubble patterns of star formation noticed something else.

“Any ideas what these bright yellow fuzzy objects are?” the volunteer wrote on a project message board.


Image courtesy of NASA/JPL-Caltech.

Citizen scientists working with the Milky Way Project noticed and tagged the "yellowballs" in the middle of this image from the Spitzer Space Telescope.

Well, that sparked some discussion among the professional astronomers on the Milky Way Project and eventually led to a study of the compact objects now known as “yellowballs.” A paper just published by The Astrophysical Journal (“The Milky Way Project: What are Yellowballs?”) answers some questions about the 900 yellowballs tagged by citizen scientists.

Charles Kerton, an Iowa State University associate professor of physics and astronomy and a member of the Milky Way Project science team, is first author of the paper. Co-authors are Grace Wolf-Chase of the Adler Planetarium in Chicago and the University of Chicago; Kim Arvidsson, formerly an Iowa State doctoral student and now of Schreiner University in Kerrville, Texas; and Chris Lintott and Robert Simpson of the University of Oxford in the United Kingdom.

“In this paper, through a combination of catalog cross-matching and infrared color analysis, we show that yellowballs are a mix of compact star-forming regions,” the astronomers wrote.

And, they wrote, the project demonstrates “the serendipitous nature of citizen science efforts” because Milky Way Project volunteers “went beyond their assigned tasks and started tagging and discussing” the yellowballs.

The Milky Way Project is part of the Zooniverse, a collection of Internet-based science projects that ask for the public’s help looking through images and other data.

The Milky Way Project asks people to study tens of thousands of Spitzer’s infrared images. People are asked to circle and classify various objects, including bubbles of gas and dust blown by the radiation and charged particles from bright young stars.

To date, citizen scientists have made nearly 1.5 million classifications for the project.

Kerton said all of that classifying is helping astronomers study and map star formation within the galaxy.

But the project took a little detour when citizen scientists noticed yellow objects along the rims of some bubble formations. (It should be noted the yellowballs found in Spitzer’s infrared images aren’t really yellow. When the images are made, various colors are assigned to represent different wavelengths of infrared light. The yellow color on the images highlights where infrared emission from molecules (colored green) and from hot dust (colored red) completely overlap.)

The astronomers began studying those yellowballs by cross-matching them against existing catalogs of space objects. They also studied the luminosity and physical sizes of 138 of the yellowballs.

Kerton said the researchers found most of the yellowballs were located in regions of the galaxy containing dense gas. They also found that yellowball luminosity was consistent with the luminosity expected for a collection of newly formed massive stars.

They’ve concluded there’s an early “yellowball stage” in the formation of stars 10 to 40 times as massive as our sun. The yellowballs are considered very young versions of the bubble formations.

“All massive stars probably go through this yellowball stage,” Kerton said. “The most massive stars go through this stage very early and quickly. Less massive stars go through this stage more slowly.”

The astronomers also wrote that further studies of yellowballs will improve our understanding of how regions of massive star formation grow from early compact stages to more evolved and bubble-like structures.

But those findings aren’t the only highlight of this particular study, Kerton said.

“The fun thing about this study is the involvement of the citizen scientists,” he said. “This is a nice example of people looking at something in the universe and saying, ‘That’s different,’ and then passing it on to professional astronomers.”

Contact Information
Charles Kerton, Physics and Astronomy, 515-294-2298, kerton@iastate.edu

Charles Kerton | newswise
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>