Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Station Astronauts Remotely Control Planetary Rover From Space

30.07.2013
Just as remotely-operated vehicles help humans explore the depths of the ocean from above, NASA has begun studying how a similar approach may one day help astronauts explore other worlds.

On June 17 and July 26, NASA tested the Surface Telerobotics exploration concept, in which an astronaut in an orbiting spacecraft remotely operates a robot on a planetary surface. In the future, astronauts orbiting other planetary bodies, such as Mars, asteroids or the moon, could use this approach to perform work on the surface using robotic avatars.


K10 Black planetary rover navigates the boulder field in the Roverscape during a Surface Telerobotics Operational Readiness Test at NASA's Ames Research Center.
Image Credit: NASA/Dominic Hart

"The initial test was notable for achieving a number of firsts for NASA and the field of human-robotic exploration," said Terry Fong, Human Exploration Telerobotics project manager and director of the Intelligent Robotics Group at NASA's Ames Research Center, Moffett Field, Calif., which designed and manages the tests. "Specifically, this project represents the first fully-interactive remote operation of a planetary rover by an astronaut in space."

During the June 17 test, Expedition 36 Flight Engineer Chris Cassidy of NASA remotely operated the K10 planetary rover in the Roverscape – an outdoor robotic test area the size of two football fields located at NASA Ames – hundreds of miles below on Earth's surface from his post aboard the International Space Station (ISS). For more than three hours, Cassidy used the robot to perform a survey of the Roverscape’s rocky, lunar-like terrain.

The July 26 test picked up where Cassidy left off. Fellow Expedition 36 Flight Engineer Luca Parmitano of the European Space Agency remotely-controlled the rover and began deploying a simulated Kapton film-based radio antenna.

These tests represent the first time NASA’s open-source Robot Application Programming Interface Delegate (RAPID) robot data messaging system was used to control a robot from space. RAPID originally was developed by NASA’s Human-Robotic Systems project and is a set of software data structures and routines that simplify the process of communicating information between different robots and their command and control systems. RAPID has been used with a wide variety of systems including rovers, walking robots, free-flying robots and robotic cranes.

The test also is the first time the NASA Ensemble-based software -- jointly developed at Ames and NASA's Jet Propulsion Laboratory in Pasadena, Calif. -- was used in space for telerobotics. Ensemble is an open architecture for the development, integration and deployment of mission operations software. Fundamentally, it is an adaptation of the Eclipse Rich Client Platform (RCP), a widespread, stable and supported framework for component-based application development. Since 2004, the Ensemble project has supported the development of mission operations software for NASA’s Science and Human Exploration and Operations mission directorates.

"Whereas it is common practice in undersea exploration to use a joystick and have direct control of remote submarines, the K10 robots are more intelligent," said Fong. "Astronauts interact with the robots at a higher level, telling them where to go, and then the robot itself independently and intelligently figures out how to safely get there."

The primary objective of the Surface Telerobotics testing is to collect engineering data from astronauts aboard the space station, the K10 robot and data communication links. This will allow engineers to characterize the system and validate previous ground tests.

NASA will conduct a final test session with the space station in August. During this test, engineers and an astronaut will inspect the deployed antenna and study human-robot interaction.

"During future missions beyond low-Earth orbit, some work will not be feasible for humans to do manually," said Fong. "Robots will complement human explorers, allowing astronauts to perform work via remote control from a space station, spacecraft or other habitat.”

The primary goal of the Human Exploration Telerobotics project is to understand how human and robot activities, such as Surface Telerobotics, can be coordinated to improve crew safety, enhance science activities and increase mission success while also reducing cost, risk and consumables, such as fuel and oxygen, during future exploration missions.

The K10 robot is a four-wheel drive, four-wheel steer robot that stands about 4.5 feet tall, weighs about 220 pounds and can travel about three feet per second (a little slower than the average person's walking pace). For the Surface Telerobotics tests, K10 is equipped with multiple cameras and a 3-D scanning laser system to perform survey work, as well as a mechanism to deploy the simulated radio antenna.

This year’s Surface Telerobotics tests simulate a possible future mission involving astronauts aboard NASA’s Orion spacecraft traveling to the L2 Earth-moon Lagrange point. The L2 point is where the combined gravity of the Earth and moon allows a spacecraft to easily maintain a stationary orbit and is located 40,000 miles above the far side of the moon. From L2, astronauts would remotely operate a robot to perform surface science work, such as deploying a radio telescope. This mission concept was developed by the Lunar University Network for Astrophysics Research (LUNAR), which is based at the University of Colorado, Boulder (CU).

“Deploying a radio telescope on the farside of the moon would allow us to make observations of the early universe free from the radio noise of Earth,” said Jack Burns, a professor at CU, director of LUNAR and co-investigator at NASA's Lunar Science Institute. “The Surface Telerobotics test represents a next step in new modes of exploration that will bring together humans and robots, as well as science and exploration. Such telerobotics technology will be needed for exploration of the moon, asteroids and eventually the surface of Mars.”

Students from several universities assisted with the development of Surface Telerobotics. Industrial design students from the Academy of Art University in San Francisco collaborated with NASA engineers to create the user interface for remotely operating the K10 rover. Undergraduates from CU and the University of Idaho helped design the Kapton film deployer, which is mounted on K10.

“These surface telerobotics tests, in collaboration with astronauts aboard the ISS, offer exciting opportunities for our students to have hands-on engineering and mission operations experiences with realistic simulations of future human-robot missions to planetary bodies," said Burns. "Such experiences inspire our students to careers in the aerospace sciences. These students are destined for bright futures as part of NASA’s exploration of the solar system.”

"This work really tests the notion that robots can project human presence to other planetary surfaces," said Fong. "Ultimately, this will allow us to discover and explore dangerous and remote places, whether they're at the bottom of the ocean or at the far reaches of our solar system."

Rachel Hoover
NASA Ames Research Center

Julie A. Robinson | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/station/research/news/rover_from_space/#.UfLJSyNfyKw

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>