Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeezing innovation out of the NASA Twins study: Pipetting and cell isolation in space

12.07.2017

Just like early explorers, NASA Twins Study investigators are venturing into new territory. Conducting human omics research on twin astronauts as part of the One Year Mission that took place aboard the International Space Station is one such venture. As technology evolves so does the research. NASA is evaluating more efficient and innovative research techniques to prepare for the journey to Mars.

Innovative thinking could improve the way biological samples are processed and transported from space back to research labs on Earth for future studies. This thinking was prompted by researchers in NASA's Human Research Program (HRP) and Twins Study investigators at Johns Hopkins Medicine.


NASA immunologist Hawley Kunz performs a microgravity evaluation of the pipetting steps necessary for terrestrial purification of cells.

Credit: NASA

Freshly isolated samples yield better results than cells isolated from frozen samples returned to Earth from the orbiting laboratory. Pipetting fresh samples at ambient temperature and performing cell isolation on the space station also eliminates the need for expeditious transportation logistics, and allows for more frequent sampling. Once cells are isolated, the samples can be viably frozen and return on any transfer vehicle at any time for further analysis.

On an aircraft that is used as a parabolic flight analog to create short periods of simulated microgravity, Twins Study Investigators Dr. Andrew Feinberg and Lindsay Rizzardi of Johns Hopkins Medicine tested a theory that liquids could be transferred safely in microgravity using a pipettor, which is a slender, graduated measurement tube. Previously researchers thought transferring biological fluids in space could pose risks to precisely controlling the sample.

"This analog demonstrated that pipetting of open fluids is relatively simple and easily controlled and that all fluid transfer steps associated with centrifugation can be replicated in microgravity," Feinberg said. "When dealing with genetic material, research requires precise transfer of liquids among different types of tubes in order to purify DNA, RNA or protein from biological samples to perform molecular analyses."

Coinciding with the fluid transfer research was cell isolation research being conducted by NASA immunologists Brian Crucian, Clarence Sams, Hawley Kunz and NASA astronaut and molecular biologist Kate Rubins. NASA researchers tested terrestrial protocols for cell purification in microgravity using the parabolic flight analog. They found that cell isolation and purification could both be performed in microgravity. Rubins also confirmed some of these findings in space. They published their research with Feinberg and Rizzardi in the July 2016 issue of NPJ Microgravity.

Crucian said, "Laboratory procedures for isolating and purifying cells typically require sensitive gradient centrifugation, careful extraction of isolated cells, and general open pipetting of liquids for washing and transferring the isolated cells."

Being able to transfer fluids and isolate cells in space is significant for a variety of reasons. Mars is a challenging distance from Earth if diagnostics are ever needed of a crewmember. Enabling astronauts to conduct more human research independently could help diagnose an illness more quickly, possibly saving a life in a medical emergency.

As NASA prepares for its journey to Mars, the way researchers handle and processes biological samples in space could change. The protocols validated by the Johns Hopkins and NASA investigators demonstrate that standard cell isolation protocols may indeed be performed in space, something which may enable certain types of genetic, or 'omics', research onboard the space station. Molecular biology technologies such as hand-held sequencers continue to evolve pushing the boundaries of scientific research. HRP will continue to adapt its methodologies to support novel research that protects and ensures the safety of future crews on long-duration missions while opening the door for innovative opportunities.

###

NASA's Human Research Program (HRP) is dedicated to discovering the best methods and technologies to support safe, productive human space travel. HRP enables space exploration by reducing the risks to human health and performance using ground research facilities, the International Space Station, and analog environments. This leads to the development and delivery of a program focused on: human health, performance, and habitability standards; countermeasures and risk mitigation solutions; and advanced habitability and medical support technologies. HRP supports innovative, scientific human research by funding more than 300 research grants to respected universities, hospitals and NASA centers to over 200 researchers in more than 30 states.

Amy Blanchett

Laurie Abadie

NASA Human Research Engagement & Communications

https://youtu.be/YNostIEbkUM

Amy Blanchett | EurekAlert!

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>