Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spinning rugby balls: The rotation of the most massive galaxies

23.05.2018

By targeting the most massive galaxies in our universe, astronomers have studied how their stars move. The results are surprising: while half of them spin around their short axis as expected, the other half turn around their long axis. Such kinematics are most likely the result of a special type of galaxy merger, involving already massive, similar-mass galaxies. This would imply that the growth of the most massive and the largest galaxies is governed by these rare events.

Surveying the extremes of the galaxy population


Mean stellar velocities: blue parts move towards, red away from us. The rotation around the long axes (r.) applies only to a small fraction of galaxies. This increases as galaxies become more massive.

MUSE/D. Krajnovic

Measuring the way stars move within galaxies is a very powerful way of learning about the internal structure of galaxies, especially properties such as their three-dimensional shape and, ultimately, what their gravitational potential is like.

To study the largest and most massive galaxies, a science team led by Davor Krajnovic from the Leibniz Institute for Astrophysics Potsdam (AIP) selected a sample of some of the brightest galaxies up to a distance of 800 million light years.

These live in large ensembles of galaxies, within some of the most densely populated regions of our Universe, such as the Shapley Supercluster. They are also very bright and rare.

The most massive galaxies are about one hundred times more massive than our own galaxy the Milky Way, which itself already has a stellar mass of 60 billion suns. They also have almost no gas, most of their stars are very old (at least 10 billion years) and do not form stars anymore.

Unfortunately, these galaxies are too far from us to be resolved into individual stars and their motions. One can only look at the average motions of stars within certain regions.

“This is what integral-field spectrographs are good at”, explains Davor Krajnovic. „We observed these galaxies with MUSE, the wonderful integral-field spectrograph on the ESO's Very Large Telescope on Cerro Paranal in Chile. Massive galaxies can have all sorts of kinematics, some spin like frisbees, but most have no specific sense of rotation. We observed the most massive galaxies and found them to be different from other galaxies.”

From discs to rugby balls

The majority of intermediate-mass galaxies shows very regular stellar motions, as one would expect from discs like our Milky Way. In such galaxies, the sense of rotation is well defined around the short axis of the object; the angular momentum is aligned with the minor axis of an oblate spheroid.

“We knew that about only 15% of the intermediate mass galaxies have irregular kinematics or even don’t show much rotation at all”, says Krajnovic. “For such galaxies, the sense of rotation is often not aligned with any of the symmetry axes of the galaxy, and these galaxies are of nearly spherical shape, or are elongated resembling rugby balls. Some of them have an interesting alignment and rotate around the long axis of the galaxy. Only a few cases of these were known.”

In this new study published in the Monthly Notices of the Royal Astronomical Society, the authors showed that these galactic “spinning rugby balls” are much more common than thought previously if one looks at the extremely massive galaxies, the high-mass end of the galaxy population.

The result is interesting as it points to a very specific formation scenario for these galactic giants. Numerical simulations indicate that rotation along the long axis is indicative for a merger of two massive galaxies with similar size (and mass) when they are on special trajectories: sort of a head-on collision in space.

Such galaxy collisions are violent events that completely reshape the internal structures of the progenitor galaxies. The remnant galaxies resemble spinning rugby balls. Stellar orbits also become much more complex, resulting in kinematics where the simple ordered motion is substituted with complex streaming around any of the three axes of a spheroid. The most massive galaxies are the end points of galaxy formation, and deservedly turn out to be the most complex stellar systems. This study helps us unveil the mystery of how the most massive galactic systems in the Universe come into existence.

Scientific contact at AIP
Dr. Davor Krajnović, 0331-7499 237, dkrajnovic@aip.de

Media contact
Franziska Gräfe, 0331-7499 803, presse@aip.de

Weitere Informationen:

https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/sty1031/4985842
https://arxiv.org/abs/1802.02591

Dr. Janine Fohlmeister | idw - Informationsdienst Wissenschaft
Further information:
http://www.aip.de

Further reports about: AIP Astrophysik Galaxies Milky Way Very Large Telescope massive galaxies

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>