Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin Manipulation Successful

22.04.2010
Ultrafast operation and high performance: This is what is expected of quantum computers. But there are still some obstacles to the technical implementation of this new type of computer. Physicists of the University of Würzburg report on their progress in this research area in "Nature Photonics".

"For the design of quantum computers, you need good quantum bits as information carriers," says physicist Martin Kamp. So what constitutes a good quantum bit? It must be able to assume several physical states which can be manipulated at will and last as long as possible.

Scientists around the world adopt a variety of different methods in order to obtain such building blocks of quantum computers. The Würzburg physicists and their cooperation partners in Japan and the United States focus their research on semiconductor nanostructures, called quantum dots. These solid state systems have the advantage of providing the possibility to integrate several quantum bits on one chip.

Spin manipulation with optical pulses

In the examined structures, each quantum dot contains an additional electron, whose so-called spin represents a quantum bit. In simplified terms, the spin corresponds to the intrinsic rotation of the electrons, which can be symbolically represented by means of an arrow. The quantum dots are located in a magnetic field, which defines a reference axis for the arrow. If the arrow points along this axis in one of two possible directions, the corresponding bit is classical in nature, i.e. of the type used by today's computers. In case of a quantum bit, however, all orientations in relation to the reference axis are relevant. Therefore, quantum bits can encode more information than classical bits, but they are also more susceptible to interferences that might lead to a change in orientation.

In the current edition of the scientific journal "Nature Photonics", the Würzburg physicists describe several possibilities to manipulate the orientation of a spin-state. "With optical pulses, you can set the spin to a clearly defined position," explains Sven Höfling of the Physics Department. However, the desired state is not of long duration; due to the interaction of the spin with the environment of the quantum dot, the information encoded in an individual spin state usually is lost within a matter of nanoseconds (billionths of a second). The task of overcoming this effect is considered to be one of the biggest challenges in the development of quantum computers.

Longer life-time of the desired spin-state

With a sophisticated method, the physicists have succeeded in significantly extending the life-time of the previously set spin state: They managed to keep it stable for several microseconds (millionths of a second). "Within this time frame, you can perform 100,000 operations on a quantum bit, which is quite acceptable for application in quantum computers," says Martin Kamp. This is possible because the use of ultra-short optical pulses allows an extremely fast manipulation of the spin states in the quantum dots.

"Our research shows that the individual spin quantum bits have a great potential for application in quantum computers or in cryptography as quantum memory elements for secure data transfer," the scientists conclude.

Interconnection of spin quantum bits as the next objective

The next objective of the physicists: to interconnect several quantum bits. In this process, they also intend to integrate the quantum bits in photonic networks, where signals are transmitted by means of optical pulses. The fact that these spin quantum bits can be integrated in such circuits is deemed to be of advantage for the further development of this technology.

"Ultrafast optical spin echo in a single quantum dot", David Press, Kristiaan De Greve, Peter L. McMahon, Thaddeus D. Ladd, Benedikt Friess, Christian Schneider, Martin Kamp, Sven Höfling, Alfred Forchel, Yoshihisa Yamamoto. Nature Photonics, published online 18 April 2010, doi:10.1038/nphoton.2010.83

Contact

Sven Höfling, phone +49 931 31-83613, sven.hoefling@physik.uni-wuerzburg.de
Martin Kamp, phone +49 931 31-85121, martin.kamp@physik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>