Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin liquids − back to the roots

22.06.2017

Researchers from Augsburg, Oxford, and Nanjing report in Nature Communications on a neutron experiment exposing experimental signatures of a low-temperature state predicted 44 years ago

Since 1973, Anderson's resonating valence bond model remains a paradigm for microscopic description of quantum spin liquids in frustrated magnets. It is of fundamental interest as a building unit for more complex quantum-mechanically entangled states that can be used in quantum computing.


Sketch of Anderson's resonating valence bond state formed by localized spins shown in green. The pair of opposite spins ("valence bond") is highlighted by a yellow oval.

© Universität Augsburg, EP VI/EKM

Researchers from the Chair of Experimental Physics VI/EKM report in Nature Communications first experimental signatures of excitations from this fundamental state exposed by a neutron-scattering study performed in collaboration with Rutherford Appleton Laboratory in Oxford and Renmin University of China.

Liquids entail haphazardly moving particles that can be correlated on the short-range scale, but lack any long-range order. In contrast to gases, liquids are only weakly compressible, because separations between their particles are small, and inter-particle interactions strong. A liquid-like state can also form in magnets, where electron spins act as individual particles.

Neighboring spins in a spin liquid strongly interact with each other, but evade long-range order, unlike, for example, in ferromagnets, where parallel alignment of spins throughout the crystal generates macroscopic magnetization that can drive rotation of the motor of an electric car or interact with Earth's magnetic field in a compass.

Spins are pairwise correlated, but remain disordered

Back in 1973 American physicist and eventual Nobel prize winner Philip W. Anderson contemplated a model, where spins are arranged on a triangular plane, and only adjacent spins (nearest neighbors) interact. These interactions trigger spins to be mutually antiparallel, but a global antiparallel (antiferromagnetic) configuration is prevented by the triangular arrangement.

The quantum-mechanical description proposed by Anderson is based on the idea of pair-wise correlations, where different pairs form, as shown in the Figure. In each pair, spins are opposite to each other forming resonating valence bonds (RVBs), the name used to emphasize close resemblance with chemical bonds between atoms in molecules and crystals.

The RVB state is quantum-mechanically entangled, it can not be represented by a simple combination of individual spins. Such entanglement opens new possibilities for high-performance calculations in a quantum computer. Despite far-reaching implications for present-day theories, the validity of Anderson's model of the RVB state was in the meantime questioned, and signatures of the RVB state were nowhere to be seen experimentally.

New substance with the triangular spin geometry

"The formation of Anderson's RVB state requires magnetic frustration, the presence of competing interactions between the spins" explains Dr. Alexander Tsirlin, the leader of the young research group at the Center for Electronic Correlations and Magnetism at the Institute of Physics in Augsburg.

This is made possible by a new substance, YbMgGaO4, that was prepared and investigated in collaboration with Renmin University of China and Rutherford Appleton Lab in Oxford, UK. The original chemical compound features regular triangular arrangement of magnetic moments, which are localized on the ytterbium atoms (see the Figure).

Earlier work by the team confirmed that even at temperatures of several hundredths of degree above the absolute zero spins remain dynamic in the form of a spin liquid evading long-range order, a pre-condition for building the long-sought RVB state.

Magnetic excitations follow predictions of Anderson's theory

Neutrons scatter from crystals changing direction and energy, and providing researchers with a sensitive probe of correlations between the spins. Neutron-scattering experiments on YbMgGaO4 reveal two distinct regimes. At higher transfer energies, where neutrons trigger high-energy excitations, experimental observations are in perfect agreement with Anderson's RVB model.

"After several decades, signatures of the nearest-neighbor RVB state have been finally observed", explains Prof. Dr. Philipp Gegenwart, head of the Chair of Experimental Physics VI / EKM. Less clear remains the experimental response at low energies, where Anderson's RVB picture fails. This part of the spectrum appears to be intertwined with magnetic interactions beyond Anderson's model, and may give researchers further clues as to why the RVB state has formed.


Publication

Yuesheng Li, Devashibhai Adroja, David Voneshen, Robert I. Bewley, Qingming Zhang, Alexander A. Tsirlin, and Philipp Gegenwart, Nearest-neighbor resonating valence bonds in YbMgGaO4, Nat. Commun. 8 (2017), 15814.

http://www.nature.com/articles/ncomms15814


Contact persons:

Prof. Dr. Philipp Gegenwart and Dr. Alexander Tsirlin
Chair of Experimental Physics VI / EKM
Institute of Physics / Center of Electronic Correlations and Magnetism
University of Augsburg
86135 Augsburg
Phone: +49(0)821/598‐3651
philipp.gegewart@physik.uni‐augsburg.de, alexander.tsirlin@physik.uni-augsburg.de

Weitere Informationen:

http://www.nature.com/articles/ncomms15814

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-augsburg.de/

Further reports about: Electronic Experimental Physics Spin bonds crystals liquids magnetism

More articles from Physics and Astronomy:

nachricht First diode for magnetic fields
21.11.2018 | Universität Innsbruck

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Sustainable energy supply in developing and emerging countries: What are the needs?

21.11.2018 | Power and Electrical Engineering

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>