Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin Currents in Topological Insulators

12.06.2012
Once again, Würzburg physicists provide new insights into spintronics: In ultra-thin topological insulators, they have identified spin-polarized currents, which were first theoretically predicted six years ago. They also present a method of application for the development of new computers.

Electrons have an intrinsic angular momentum, called spin. As a consequence, not only do they carry charge, but they also behave like tiny magnets, which can be aligned. In our everyday use of computers, however, so many electron magnets point randomly in all directions as to cancel out as a whole.


The edge currents of a topological insulator serve as a source of spin-polarized electrons. Graphics: Luis Maier


Electron microscopic image of the circuit: The semiconductor H is shown in red, the gate contacts in yellow. The picture shows a section of about three by three micrometers. Photo: Luis Maier

But if the spin were to be controlled, conventional computers might suddenly become a lot faster: In the field of so-called spintronics, the magnetic orientation of the electrons is used for information transfer, which generates much less heat than is produced by continually switching the current on and off as is required in conventional electronics.

Metal and insulator at the same time: Topological insulators

Topological insulators represent a very promising class of materials for the implementation of spintronic devices. They conduct electricity only on their surface, but not in their interior. In the thin layers of some of these materials, the edge current consists of exactly two channels in which the individual electrons flow. The flow direction in the two channels is opposite to each other as is the spin orientation. This behavior is called the quantum spin Hall effect due to its analogy to the quantum Hall effect. The QSH effect was discovered in 2007 by the research group of Professor Laurens Molenkamp at the University of Würzburg.

Physicists at the department of Laurens Molenkamp and the research group of Professor Ewelina Hankiewicz now demonstrate – together with researchers of Stanford University in California – how the spin polarization of the channels can be experimentally verified. They also present an electronic device that can generate and measure spin-polarized currents and thus possesses some basic qualities required for spintronics. The results are published in the prestigious journal "Nature Physics".

From theory to experiment: Successful with an H-shaped nanostructure

Until recently, the spin-polarization of the channels was just mathematically described; experimentally, it could only be indirectly inferred. "However, the quantum spin Hall effect requires an actual spin-polarized transport as a condition for its existence," says research group leader Hartmut Buhmann of Molenkamp's department.

Würzburg physicist Christoph Brüne managed to furnish the desired experimental proof with an ingenious experimental set-up. Critical to the success was an H-shaped nanostructure, consisting of mercury telluride and fitted with an additional gold electrode at each leg.

With this configuration, it is possible to induce a quantum spin Hall state in one leg of the H-structure by means of an applied gate voltage. The other leg causes an imbalance between the two spin currents at the connection point, the cross bar of the H. As a consequence, only electrons with magnetic alignment can be extracted and measured. This also works in the reverse direction so that you can inject a spin-polarized current and measure the induced voltage in the QSH material.

Editors of "Nature Physics" turn the spotlight on the research

The theory required for the clear identification of the measured values as spin-currents, including some sophisticated simulations, comes from the group of Ewelina Hankiewicz and her colleagues in the research group of Professor Shou-Cheng Zhang in Stanford: "It wasn't easy to calculate how the spin edge currents get into the metal of the second leg," Professor Hankiewicz says.

However, all the hard work paid off in the end. The editors of "Nature Physics" even dedicated a "News & Views" review article to the Würzburg research. "This is equivalent to a high distinction, classifying our results as particularly important," explains Laurens Molenkamp.

Next research steps: Development of the concept

So far, the configuration presented by the Würzburg physicists only works at extremely low temperatures of typically minus 271 degrees Celsius. To make it work at room temperature, the scientists still need to find suitable materials. In the future, the Würzburg researchers intend as a first step to develop the concept into a spin transistor, thus providing all the basic elements required for application in spintronics.

In addition, topological insulators have even more potential: They are a safe bet for further exotic discoveries, such as Majorana fermions, i.e. particles that are their own anti-particles. So it doesn't come as a surprise that the German Research Foundation (DFG) intends to establish a new priority program for "topological insulators" this year.

Publications on the topic

Christoph Brüne, Andreas Roth, Hartmut Buhmann, Ewelina M. Hankiewicz, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi & Shou-Cheng Zhang: Spin polarization of the quantum spin Hall edge states; Nature Physics 8, 486–491 (2012), doi:10.1038/nphys2322

Yi Zhou & Fu-Chun Zhang: Quantum spin Hall effect: Left up right down; Nature Physics 8, 448–449 (2012), doi: 10.1038/nphys2335

Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi and Shou-Cheng Zhang: Quantum Spin Hall Insulator State in HgTe Quantum Wells; Science 318, 766-770 (2007), doi: 10.1126/science.1148047

Contact person

Prof. Dr. Laurens Molenkamp, Institute of Physics of the University of Würzburg, T (0931) 31-84925, molenkamp@physik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Time-resolved measurement in a memory device
19.02.2020 | ETH Zurich

nachricht Studying electrons, bridging two realms of physics: connecting solids and soft matter
18.02.2020 | Tokyo University of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>