Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin Currents in Topological Insulators

12.06.2012
Once again, Würzburg physicists provide new insights into spintronics: In ultra-thin topological insulators, they have identified spin-polarized currents, which were first theoretically predicted six years ago. They also present a method of application for the development of new computers.

Electrons have an intrinsic angular momentum, called spin. As a consequence, not only do they carry charge, but they also behave like tiny magnets, which can be aligned. In our everyday use of computers, however, so many electron magnets point randomly in all directions as to cancel out as a whole.


The edge currents of a topological insulator serve as a source of spin-polarized electrons. Graphics: Luis Maier


Electron microscopic image of the circuit: The semiconductor H is shown in red, the gate contacts in yellow. The picture shows a section of about three by three micrometers. Photo: Luis Maier

But if the spin were to be controlled, conventional computers might suddenly become a lot faster: In the field of so-called spintronics, the magnetic orientation of the electrons is used for information transfer, which generates much less heat than is produced by continually switching the current on and off as is required in conventional electronics.

Metal and insulator at the same time: Topological insulators

Topological insulators represent a very promising class of materials for the implementation of spintronic devices. They conduct electricity only on their surface, but not in their interior. In the thin layers of some of these materials, the edge current consists of exactly two channels in which the individual electrons flow. The flow direction in the two channels is opposite to each other as is the spin orientation. This behavior is called the quantum spin Hall effect due to its analogy to the quantum Hall effect. The QSH effect was discovered in 2007 by the research group of Professor Laurens Molenkamp at the University of Würzburg.

Physicists at the department of Laurens Molenkamp and the research group of Professor Ewelina Hankiewicz now demonstrate – together with researchers of Stanford University in California – how the spin polarization of the channels can be experimentally verified. They also present an electronic device that can generate and measure spin-polarized currents and thus possesses some basic qualities required for spintronics. The results are published in the prestigious journal "Nature Physics".

From theory to experiment: Successful with an H-shaped nanostructure

Until recently, the spin-polarization of the channels was just mathematically described; experimentally, it could only be indirectly inferred. "However, the quantum spin Hall effect requires an actual spin-polarized transport as a condition for its existence," says research group leader Hartmut Buhmann of Molenkamp's department.

Würzburg physicist Christoph Brüne managed to furnish the desired experimental proof with an ingenious experimental set-up. Critical to the success was an H-shaped nanostructure, consisting of mercury telluride and fitted with an additional gold electrode at each leg.

With this configuration, it is possible to induce a quantum spin Hall state in one leg of the H-structure by means of an applied gate voltage. The other leg causes an imbalance between the two spin currents at the connection point, the cross bar of the H. As a consequence, only electrons with magnetic alignment can be extracted and measured. This also works in the reverse direction so that you can inject a spin-polarized current and measure the induced voltage in the QSH material.

Editors of "Nature Physics" turn the spotlight on the research

The theory required for the clear identification of the measured values as spin-currents, including some sophisticated simulations, comes from the group of Ewelina Hankiewicz and her colleagues in the research group of Professor Shou-Cheng Zhang in Stanford: "It wasn't easy to calculate how the spin edge currents get into the metal of the second leg," Professor Hankiewicz says.

However, all the hard work paid off in the end. The editors of "Nature Physics" even dedicated a "News & Views" review article to the Würzburg research. "This is equivalent to a high distinction, classifying our results as particularly important," explains Laurens Molenkamp.

Next research steps: Development of the concept

So far, the configuration presented by the Würzburg physicists only works at extremely low temperatures of typically minus 271 degrees Celsius. To make it work at room temperature, the scientists still need to find suitable materials. In the future, the Würzburg researchers intend as a first step to develop the concept into a spin transistor, thus providing all the basic elements required for application in spintronics.

In addition, topological insulators have even more potential: They are a safe bet for further exotic discoveries, such as Majorana fermions, i.e. particles that are their own anti-particles. So it doesn't come as a surprise that the German Research Foundation (DFG) intends to establish a new priority program for "topological insulators" this year.

Publications on the topic

Christoph Brüne, Andreas Roth, Hartmut Buhmann, Ewelina M. Hankiewicz, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi & Shou-Cheng Zhang: Spin polarization of the quantum spin Hall edge states; Nature Physics 8, 486–491 (2012), doi:10.1038/nphys2322

Yi Zhou & Fu-Chun Zhang: Quantum spin Hall effect: Left up right down; Nature Physics 8, 448–449 (2012), doi: 10.1038/nphys2335

Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi and Shou-Cheng Zhang: Quantum Spin Hall Insulator State in HgTe Quantum Wells; Science 318, 766-770 (2007), doi: 10.1126/science.1148047

Contact person

Prof. Dr. Laurens Molenkamp, Institute of Physics of the University of Würzburg, T (0931) 31-84925, molenkamp@physik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Thin films from Braunschweig on the way to Mercury
19.10.2018 | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

nachricht Extremely close look at electron advances frontiers in particle physics
19.10.2018 | National Science Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>