Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SPHERE reveals fascinating zoo of discs around young stars

11.04.2018

The SPHERE instrument on ESO's Very Large Telescope (VLT) in Chile allows astronomers to suppress the brilliant light of nearby stars in order to obtain a better view of the regions surrounding them. This collection of new SPHERE images is just a sample of the wide variety of dusty discs being found around young stars.

These discs are wildly different in size and shape -- some contain bright rings, some dark rings, and some even resemble hamburgers. They also differ dramatically in appearance depending on their orientation in the sky -- from circular face-on discs to narrow discs seen almost edge-on.


New images from the SPHERE instrument on ESO's Very Large Telescope are revealing the dusty discs surrounding nearby young stars in greater detail than previously achieved. They show a bizarre variety of shapes, sizes and structures, including the likely effects of planets still in the process of forming.

Credit: ESO/H. Avenhaus et al./E. Sissa et al./DARTT-S and SHINE collaborations

SPHERE's primary task is to discover and study giant exoplanets orbiting nearby stars using direct imaging . But the instrument is also one of the best tools in existence to obtain images of the discs around young stars -- regions where planets may be forming. Studying such discs is critical to investigating the link between disc properties and the formation and presence of planets.

Many of the young stars shown here come from a new study of T Tauri stars, a class of stars that are very young (less than 10 million years old) and vary in brightness. The discs around these stars contain gas, dust, and planetesimals -- the building blocks of planets and the progenitors of planetary systems.

These images also show what our own Solar System may have looked like in the early stages of its formation, more than four billion years ago.

Most of the images presented were obtained as part of the DARTTS-S (Discs ARound T Tauri Stars with SPHERE) survey. The distances of the targets ranged from 230 to 550 light-years away from Earth. For comparison, the Milky Way is roughly 100 000 light-years across, so these stars are, relatively speaking, very close to Earth. But even at this distance, it is very challenging to obtain good images of the faint reflected light from discs, since they are outshone by the dazzling light of their parent stars.

Another new SPHERE observation is the discovery of an edge-on disc around the star GSC 07396-00759, found by the SHINE (SpHere INfrared survey for Exoplanets) survey. This red star is a member of a multiple star system also included in the DARTTS-S sample but, oddly, this new disc appears to be more evolved than the gas-rich disc around the T Tauri star in the same system, although they are the same age. This puzzling difference in the evolutionary timescales of discs around two stars of the same age is another reason why astronomers are keen to find out more about discs and their characteristics.

Astronomers have used SPHERE to obtain many other impressive images , as well as for other studies including the interaction of a planet with a disc , the orbital motions within a system, and the time evolution of a disc.

The new results from SPHERE, along with data from other telescopes such as ALMA, are revolutionising astronomers' understanding of the environments around young stars and the complex mechanisms of planetary formation.

###

More information

The images of T Tauri star discs were presented in a paper entitled "Disks Around T Tauri Stars With SPHERE (DARTTS-S) I: SPHERE / IRDIS Polarimetric Imaging of 8 Prominent T Tauri Disks", by H. Avenhaus et al., to appear in in the Astrophysical Journal. The discovery of the edge-on disc is reported in a paper entitled "A new disk discovered with VLT/SPHERE around the M star GSC 07396-00759", by E. Sissa et al., to appear in the journal Astronomy & Astrophysics.

The first team is composed of Henning Avenhaus (Max Planck Institute for Astronomy, Heidelberg, Germany; ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland; Universidad de Chile, Santiago, Chile), Sascha P. Quanz (ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland; National Center of Competence in Research "PlanetS"), Antonio Garufi (Universidad Autonónoma de Madrid, Madrid, Spain), Sebastian Perez (Universidad de Chile, Santiago, Chile; Millennium Nucleus Protoplanetary Disks Santiago, Chile), Simon Casassus (Universidad de Chile, Santiago, Chile; Millennium Nucleus Protoplanetary Disks Santiago, Chile), Christophe Pinte (Monash University, Clayton, Australia; Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France), Gesa H.-M. Bertrang (Universidad de Chile, Santiago, Chile), Claudio Caceres (Universidad Andrés Bello, Santiago, Chile), Myriam Benisty (Unidad Mixta Internacional Franco-Chilena de Astronomía, CNRS/INSU; Universidad de Chile, Santiago, Chile; Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) and Carsten Dominik (Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands).

The second team is composed of: E. Sissa (INAF-Osservatorio Astronomico di Padova, Padova, Italy), J. Olofsson (Max Planck Institute for Astronomy, Heidelberg, Germany; Universidad de Valparaíso, Valparaíso, Chile), A. Vigan (Aix-Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France), J.C. Augereau (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France) , V. D'Orazi (INAF-Osservatorio Astronomico di Padova, Padova, Italy), S. Desidera (INAF-Osservatorio Astronomico di Padova, Padova, Italy), R. Gratton (INAF-Osservatorio Astronomico di Padova, Padova, Italy), M. Langlois (Aix-Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille Marseille, France; CRAL, CNRS, Université de Lyon, Ecole Normale Suprieure de Lyon, France), E. Rigliaco (INAF-Osservatorio Astronomico di Padova, Padova, Italy), A. Boccaletti (LESIA, Observatoire de Paris-Meudon, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, Meudon, France), Q. Kral (LESIA, Observatoire de Paris-Meudon, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, Meudon, France; Institute of Astronomy, University of Cambridge, Cambridge, UK), C. Lazzoni (INAF-Osservatorio Astronomico di Padova, Padova, Italy; Universitá di Padova, Padova, Italy), D. Mesa (INAF-Osservatorio Astronomico di Padova, Padova, Italy; University of Atacama, Copiapo, Chile), S. Messina (INAF-Osservatorio Astrofisico di Catania, Catania, Italy), E. Sezestre (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), P. Thébault (LESIA, Observatoire de Paris-Meudon, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, Meudon, France), A. Zurlo (Universidad Diego Portales, Santiago, Chile; Unidad Mixta Internacional Franco-Chilena de Astronomia, CNRS/INSU; Universidad de Chile, Santiago, Chile; INAF-Osservatorio Astronomico di Padova, Padova, Italy), T. Bhowmik (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), M. Bonnefoy (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), G. Chauvin (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France; Universidad Diego Portales, Santiago, Chile), M. Feldt (Max Planck Institute for Astronomy, Heidelberg, Germany), J. Hagelberg (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), A.-M. Lagrange (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), M. Janson (Stockholm University, Stockholm, Sweden; Max Planck Institute for Astronomy, Heidelberg, Germany), A.-L. Maire (Max Planck Institute for Astronomy, Heidelberg, Germany), F. Ménard (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), J. Schlieder (NASA Goddard Space Flight Center, Greenbelt, Maryland, USA; Max Planck Institute for Astronomy, Heidelberg, Germany), T. Schmidt (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), J. Szulági (Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland; Institute for Computational Science, University of Zurich, Zurich, Switzerland), E. Stadler (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), D. Maurel (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), A. Deboulbé (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), P. Feautrier (Université Grenoble Alpes, CNRS, IPAG, Grenoble, France), J. Ramos (Max Planck Institute for Astronomy, Heidelberg, Germany) and R. Rigal (Anton Pannekoek Institute for Astronomy, Amsterdam, The Netherlands).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It has 15 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a strategic partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become "the world's biggest eye on the sky".

Links

Contacts

Henning Avenhaus
Max Planck Institute for Astronomy
Heidelberg, Germany
Email: havenhaus@gmail.com

Elena Sissa
INAF - Astronomical Observatory of Padova
Padova, Italy
Email: elena.sissa@inaf.it

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49-89-3200-6655
Cell: +49-151-1537-3591
Email: rhook@eso.org

http://www.eso.org 

Richard Hook | EurekAlert!
Further information:
http://www.eso.org/public/news/eso1811/

Further reports about: CNRS ESO Marie Curie Max Planck Institute Telescope astronomy young stars

More articles from Physics and Astronomy:

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht All in the family: Kin of gravitational wave source discovered
16.10.2018 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

 
Latest News

Unravelling the genetics of fungal fratricide

16.10.2018 | Life Sciences

Blue phosphorus -- mapped and measured for the first time

16.10.2018 | Physics and Astronomy

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>