Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space weather prediction model improves NOAA’s forecast skill

21.10.2011
NOAA is now using a sophisticated forecast model that substantially improves predictions of space weather impacts on Earth. Better forecasts offer additional protection for people and the technology-based infrastructure we use daily.

Explosions in the sun’s outer atmosphere – tracked and forecast by NOAA scientists – can cause geomagnetic and solar radiation storms at Earth that can impede the operation of electrical power grids, interfere with the normal function of Global Positioning Systems and temporarily hamper radio and satellite telecommunications. Grid and satellite operators and airlines can take protective measures when stormy conditions are forecast.


An X-ray image of the Sun from August 5, captured by a NOAA satellite. Three successive coronal mass ejections - big blasts of plasma from the Sun - exploded from a bright region near far right (circled in additional image). Impacts on Earth were minimal: temporary high-frequency radio outages in a few regions, minor distortion of global positioning system signals and no known power outages or satellite damage. (Credit: NOAA)

“This advanced model has strengthened forecasters’ understanding of what happens in the 93 million miles between Earth and the sun following a solar disturbance,” said Tom Bogdan, director of NOAA’s Space Weather Prediction Center in Boulder, Colo. “It will help power grid and communications technology managers know what to expect so they can protect infrastructure and the public.”

Magnetic storms can occur on Earth 1–4 days after a coronal mass ejection – a burst of charged particles and magnetic field that streams out from the sun at more than one million miles an hour. Before development of this model, forecasters could predict timing of such impacts within a 30-hour window, on average. The new model allows forecasters to narrow that window to 12 hours.

That improvement gives airline operators more reliable information about when to reroute flights to avoid communications blackouts from storms. Satellite operators can avoid changing orbit or orientation when space weather threatens. Oil drilling, mining and other operations that rely on global positioning systems – which can be made unreliable by space weather – can avoid conditions that might put operators at risk. Power companies can work to prevent problems.

“The shorter prediction timeframe will enable the electric industry to better prepare for potential issues,” said Gerry Cauley, president and chief executive officer of the North American Electric Reliability Corporation. “The continued improvement of forecasting through innovation and modernization of the existing satellite infrastructure is vital to support the reliability of North America’s bulk electric system.”

The new model, WSA-Enlil, combines two advanced models, the Wang-Sheeley-Arge (WSA) and Enlil (named for the Sumerian god of wind). These linked numerical forecast models simulate physical conditions and phenomena from the base of the sun’s corona out into interplanetary space, to Earth and beyond. Space weather scientists “inject” solar events into the WSA-Enlil model to understand how the space weather storm system is likely to unfold.

Scientists with NOAA, NASA, the Air Force Research Laboratory, the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado at Boulder, Boston University, the National Center for Atmospheric Research and George Mason University collaborated to develop the model.

The model has been used in experimental mode for several months and has accurately forecast the timing of recent space weather events. NOAA began running the new model on its supercomputers officially on September 30. Recent model run results are available online.

NOAA’s Space Weather Prediction Center in Boulder, Colo. is the nation’s official source of operational forecasts, warnings and alerts about space weather.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Katy Human | EurekAlert!
Further information:
http://www.noaa.gov
http://www.noaanews.noaa.gov/stories2011/20111019_spaceweather.html

More articles from Physics and Astronomy:

nachricht 4D imaging with liquid crystal microlenses
20.11.2019 | American Chemical Society

nachricht Outback telescope captures Milky Way center, discovers remnants of dead stars
20.11.2019 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>