Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sorting machine for atoms

10.02.2017

Physicists at the University of Bonn have cleared a further hurdle on the path to creating quantum computers: in a recent study, they present a method with which they can very quickly and precisely sort large numbers of atoms. The work has now been published in “Physical Review Letters”.

Imagine you are standing in a grocery store buying apple juice. Unfortunately, all of the crates are half empty because other customers have removed individual bottles at random. So you carefully fill your crate bottle by bottle.


The physicists from University of Bonn (from left): Dr. Andrea Alberti, Carsten Robens, Prof. Dr. Dieter Meschede, Dr. Wolfgang Alt and Stefan Brakhane.

© Foto: Volker Lannert/Uni Bonn


The fluorescence microscope images clearly show the sorting process.

© Carsten Robens/Uni Bonn

But wait: The neighboring crate is filled in exactly the opposite way! It has bottles where your crate has gaps. If you could lift these bottles in one hit and place them in your crate, it would be full straight away. You could save yourself a lot of work.

Unfortunately, such solutions don’t (yet) exist for half-empty drinks crates. However, physicists at the University of Bonn want to sort thousands of atoms however they like in the future in this way – and in a matter of seconds. Around the world, scientists are currently looking for methods that enable sorting processes in the microcosm.

The proposal by Bonn-based researchers could push the development of future quantum computers a crucial step forward. This allows atoms to interact with each other in a targeted manner in order to be able to exploit quantum-mechanical effects for calculations. In addition, the particles have to be brought into spatial proximity with one another.

Magnetized atoms on optical conveyor belts

The physicists are using a special property of atoms to create their sorting machine: These rotate around their own axis like little spinning tops. The direction of rotation – the spin – can be influenced with microwaves. The physicists thus initially set all of the atoms off in the same direction of rotation in their experiment.

In this state, it was possible to load the particles onto a laser beam. However, beforehand, they had to manipulate the laser in such a way that it matched the spin of its particles – a process known as polarization. The atoms were then held by the polarized laser beam in such a manner that they were unable to move. Every particle occupies a particular place on the laser beam – similar to the bottles in the crate.

However, like in the drinks crate, some of the places in the laser beam are also unoccupied. “We thus reversed the direction of rotation in a very targeted manner for individual atoms,” explains Dr. Andrea Alberti, the team leader at the Institute of Applied Physics of the University of Bonn. “These particles were then no longer captured by our laser beam. However, we were able to grab them with a second, differently polarized laser beam and thus move them as desired.

The transport beam can, in principle, move as many atoms as one likes at the same time. As this takes place, they retain their position to each other. As in the example with the bottles, several particles can thus be lifted at once and placed in the gaps between other atoms in one go. “Our sorting method is thus extremely efficient,” explains the lead author of the study, Carsten Robens. “It does not make any major difference whether we are sorting hundreds or thousands of atoms – the time needed only increases slightly.” For the moment, the researchers only worked with four atoms in their experiment, which is now being published.

In principle, the method is suitable for creating any atom pattern. This makes it interesting for solid-state physicists, for instance, to investigate the behavior of semiconductor crystals under certain conditions.

Publication: Carsten Robens, Jonathan Zopes, Wolfgang Alt, Stefan Brakhane, Dieter Meschede, and Andrea Alberti: Low-entropy states of neutral atoms in polarization-synthesized optical lattices; Physical Review Letters

Contact:

Carsten Robens
Institute of Applied Physics (IAP)
University of Bonn
Tel. +49 (0)228/73-3484
E-mail: Robens@iap.uni-bonn.de

Dr. Andrea Alberti
Institute of Applied Physics (IAP)
University of Bonn
Tel. +49 (0)228/733471
E-mail: alberti@iap.uni-bonn.de
www: http://quantum-technologies.iap.uni-bonn.de

Weitere Informationen:

https://doi.org/10.1103/PhysRevLett.118.065302 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>