Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the mystery of quantum light in thin layers

16.10.2019

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to glow in a highly unusual fashion.


Local distortions in the surface push electrons close to defects. Only the combination of defects and strain can explain the new kind of quantum light.

Credit: TU Wien

In addition to ordinary light, which other semiconductor materials can emit too, tungsten diselenide also produces a very special type of bright quantum light, which is created only at specific points of the material. It consists of a series of photons that are always emitted one-by-one - never in pairs or in bunches.

This anti-bunching effect is perfect for experiments in the field of quantum information and quantum cryptography, where single photons are required. However, for years this emission has remained a mystery.

At the TU Vienna an explanation has now been found: A subtle interaction of single atomic defects in the material and mechanical strain is responsible for this quantum light effect. Computer simulations show how the electrons are driven to specific places in the material, where they are captured by a defect, lose energy and emit a photon. The solution to the quantum light puzzle has now been published in the journal Physical Review Letters.

Only three atoms thick

Tungsten diselenide is a so-called "two-dimensional material" that forms extremely thin layers. Such layers are only three atomic layers thick: there are tungsten atoms in the middle, coupled to selenium atoms below and above. "If energy is supplied to the layer, for example by applying an electrical voltage or by irradiating it with light of a suitable wavelength, it begins to shine," explains Lukas Linhart from the Institute of Theoretical Physics at the TU Vienna.

"This in itself is not unusual, many materials do that. However, when the light emitted by tungsten diselenide was analysed in detail, in addition to ordinary light a special type of light with very unusual properties was detected."

This special nature quantum light consists of photons of specific wavelengths - and they are always emitted individually. It never happens that two photons of the same wavelength are detected at the same time.

"This tells us that these photons cannot be produced randomly in the material, but that there must be certain points in the tungsten diselenide sample that produce many of these photons, one after the other", explains Prof. Florian Libisch, spokesperson of the Graduate School TU-D at the TU Vienna with a focus on two-dimensional materials.

Explaining this effect requires the detailed understanding of the behaviour of the electrons in the material on a quantum physical level. Electrons in tungsten diselenide can occupy different energy states. If an electron changes from a state of high energy to a state of lower energy, a photon is emitted. However, this jump to a lower energy is not always allowed: The electron has to adhere to certain laws - the conservation of momentum and angular momentum.

Defects and distortions

Due to these conservation laws, an electron in a high energy quantum state must remain there - unless certain imperfections in the material allow the energy states to change. "A tungsten diselenide layer is never perfect. In some places one or more selenium atoms may be missing," says Lukas Linhart. "This also changes the energy of the electron states in this region."

Moreover, the material layer is not a perfect plane. Like a blanket that wrinkles when spread over a pillow, tungsten diselenide stretches locally when the material layer is suspended on small support structures. These mechanical stresses also have an effect on the electronic energy states.

"The interaction of material defects and local strains is complicated. However, we have now succeeded in simulating both effects on a computer" says Lukas Linhart. "And it turns out that only the combination of these effects can explain the strange light effects." At those microscopic regions of the material, where defects and surface strains appear together, the energy levels of the electrons change from a high to a low energy state and emit a photon. The laws of quantum physics do not allow two electrons to be in exactly the same state at the same time, and therefore the electrons must undergo this process one by one. This leads to the photons being emitted one by one as well.

At the same time, the mechanical distortion of the material helps to accumulate a large number of electrons in the vicinity of the defect, so that another electron is readily available to step in after the last one has changed its state and emitted a photon.

This result illustrates that ultrathin 2D materials open up completely new possibilities for materials science.

###

Contact

Prof. Florian Libisch
Institute for Theoretical Physics
TU Wien
Wiener Hauptstraße 8-10, Vienna
T +43-1-58801-13608
florian.libisch@tuwien.ac.at

Dipl.-Ing. Lukas Linhart
Institute for Theoretical Physics
TU Wien
Wiener Hauptstraße 8-10, Vienna
T +43-1-58801-13655
lukas.linhart@tuwien.ac.at

Florian Aigner | EurekAlert!
Further information:
https://www.tuwien.at/en/tu-wien/news/news-articles/news/solving-the-mystery-of-quantum-light-in-thin-layers/
http://dx.doi.org/10.1103/PhysRevLett.123.146401

More articles from Physics and Astronomy:

nachricht Extremely energetic particles coupled with the violent death of a star for the first time
21.11.2019 | University of Copenhagen

nachricht First detection of gamma-ray burst afterglow in very-high-energy gamma light
21.11.2019 | Max-Planck-Institut für Kernphysik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>