Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why solar wind is rhombic-shaped

15.11.2011
Temperature and energy equipartition in cosmic plasmas explained / RUB researchers report in Physical Review Letters

Why the temperatures in the solar wind are almost the same in certain directions, and why different energy densities are practically identical, was until now not clear. With a new approach to calculating instability criteria for plasmas, Bochum researchers lead by Prof. Dr. Reinhard Schlickeiser (Chair for Theoretical Physics IV) have solved both problems at once.


Solar wind data: The plasma beta represents the ratio of kinetic to magnetic pressure in the cosmic plasma. The anisotropy is the ratio of the perpendicular and parallel temperatures to the magnetic field lines. The number of measured values is shown in colour (red corresponds to many values, blue to few values). Why the measurements take on the characteristic rhombic shape is explained by a new model by Bochum’s physicists. Source: Physical Review Letters © American Physical Society

They were the first to incorporate the effects of collisions of the solar wind particles in their model. This explains experimental data significantly better than previous calculations and can also be transferred to cosmic plasmas outside our solar system. The scientists report on their findings in Physical Review Letters.

Temperatures and pressures in the cosmic plasma

The solar wind consists of charged particles and is permeated by a magnetic field. In the analysis of this plasma, researchers investigate two types of pressure: the magnetic pressure describes the tendency of the magnetic field lines to repel each other, the kinetic pressure results from the momentum of the particles. The ratio of kinetic to magnetic pressure is called plasma beta and is a measure of whether more energy per volume is stored in magnetic fields or in particle motion. In many cosmic sources, the plasma beta is around the value one, which is the same as energy equipartition. Moreover, in cosmic plasmas near temperature isotropy prevails, i.e. the temperature parallel and perpendicular to the magnetic field lines of the plasma is the same.

Explaining satellite data

For over a decade, the instruments of the near-earth WIND satellite have gathered various solar wind data. When the plasma beta measured is plotted against the temperature anisotropy (the ratio of the perpendicular to the parallel temperature), the data points form a rhombic area around the value one. “If the values move out of the rhombic configuration, the plasma is unstable and the temperature anisotropy and the plasma beta quickly return to the stable region within the rhombus” says Prof. Schlickeiser. However, a specific, detailed explanation of this rhombic shape has, until now, been lacking, especially for low plasma beta.

Collisions in the solar wind

In previous models it was assumed that, due to the low density, the solar wind particles do not directly collide, but only interact via electromagnetic fields. “Such assumptions are, however, no longer justified for small plasma beta, since the damping due to particle collisions needs to be taken into account” explains Dipl.-Phys. Michal Michno. Prof. Schlickeiser’s group included this additional damping in their model, which led to new rhombic thresholds i.e. new stability conditions. The Bochum model explains the solar wind data measured significantly better than previous theories.

Universally valid solution

The new model can be applied to other dilute cosmic plasmas which have densities, temperatures and magnetic field strengths similar to the solar wind. Even if the diagram of temperature anisotropy and plasma beta does not have exactly the rhombic shape that the researchers found for the solar wind, the newly discovered mechanism predicts that the values are always close to one. In this way, the theory also makes an important contribution to the explanation of the energy equipartition in cosmic plasmas outside of our solar system.

Further information

Prof. Dr. Reinhard Schlickeiser, Chair for Theoretical Physics IV, Faculty of Physics and Astronomy at the Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-22032

rsch@tp4.ruhr-uni-bochum.de

Michal Michno, Chair for Theoretical Physics IV, Faculty of Physics and Astronomy at the Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-22051

mjm@tp4.ruhr-uni-bochum.de

Bibliographic record

R. Schlickeiser, M. J. Michno, D. Ibscher, M. Lazar, T. Skoda (2011): Modified temperature-anisotropy instability thresholds in the solar wind, Physical Review Letters, 107, 201102, doi: 10.1103/PhysRevLett.107.201102

Editor
Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Physics and Astronomy:

nachricht Gravitational waves will settle cosmic conundrum
15.02.2019 | Simons Foundation

nachricht Spintronics by 'straintronics'
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>