Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smooth propagation of spin waves using gold

26.06.2017

The generation mechanism of spin wave noise and the suppression method

Assistant Professor Taichi Goto at Toyohashi University of Technology elucidated the noise generation mechanism of the spin wave (SW), the wave of a magnetic moment transmitted through magnetic oxide, and established a way to suppress it. The large noise generated by SWs traveling through magnetic oxides has presented a significant obstacle to its applications. However, it became clear that noise can be suppressed by installing a thin gold film in the appropriate places. This method is expected to be applied to SW devices such as multi-input and multi-output phase interference devices for SWs. The research results were reported in Journal of Physics D: Applied Physics on June 15, 2017.


This is a magnetic oxide film treated with gold film capable of suppressing SW noise.

COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

Recent electronic devices using semiconductor materials are having difficulty meeting the demand of a rapidly growing information society due to issues such as a high chip temperature due to high integration. Development of an SW logic circuit that can process information, and significantly suppress heat generation through transmitting only SWs without transferring electrons themselves, has been attracting attention. SWs that propagate through magnetic oxides have the advantage of low energy loss and a long transmission distance. On the other hand, as the loss is so small, SW reflected at the end of the material or interface with the electrode disturb the target spin wave. This phenomenon is called SW noise, which has made SW unsuitable for application in the past.

The Spin Electronics Group of Toyohashi University of Technology discovered that forming a gold film with sufficient length at the end of an yttrium iron garnet (YIG), which is a well-known magnetic oxide material, suppresses the generation of unnecessary SWs. In addition, the group found for the first time that SW noise is also sensitive to the position of the gold film.

... more about:
»electrode »electrodes »split »waves »yttrium

"There are series of new devices using SWs and findings of new phenomena, yet there hasn't been much research on finding out how to transmit SWs through magnetic oxide or elucidating the cause of the generation of disturbing SWs.", said Assistant Professor Goto.

The first author master course student Shimada who ran the simulation said, "We analyzed the fundamental propagation characteristics of the structure using gold film. Since this method can significantly suppress the noise, it will contribute to the development of SW devices that use magnetic oxide. Furthermore, SW logic circuits that use phase information can be realized as the phases of waves are stabilized." SW propagation characteristics were calculated and analyzed based on the finite element analysis method, by computer generating a three-dimensional model that has the same size as the sample used in the actual experiment. A model with a pair of electrodes for exciting SWs and a gold film for removing noise placed on the magnetic oxide was used to find out how gold film affects SW propagation by comprehensively changing the length of magnetic oxide materials, the position of the gold film, and the distance from the electrode. The result showed that when the distance between the gold film and the electrodes is long, a standing wave of SWs is generated, causing strong noise. The group learned that the noise can be suppressed by positioning the gold film close enough to the electrodes. This helps smoothen the propagation characteristics, and realizes a stable element design that can keep the influence of some frequency variations and disturbances to the entire device, to the propagation characteristics, small.

This simulation is a known method with high reproducibility. Therefore, the method is expected to be applied to SW devices such as multi-input/multi-output phase interference devices for SW in the future.

###

Funding agency:

This work supported by Grants-in-Aid for PRESTO Program (JPMJPR1524) from JST, KAKENHI (Nos. 26706009?26220902?25820124) from JSPS, and Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2802) from JSPS.

Reference:

Kei Shimada, Taichi Goto, Naoki Kanazawa, Hiroyuki Takagi, Yuichi Nakamura, Hironaga Uchida and Mitsuteru Inoue, "Extremely flat transmission band of forward volume spin wave using gold and yttrium iron garnet", 2017 J. Phys. D: Appl. Phys. 50 275001. https://doi.org/10.1088/1361-6463/aa7505

Media Contact

Yuko Ito
press@office.tut.ac.jp

Toyohashi University of Technology - Google-Suche

https://www.tut.ac.jp/english/

Yuko Ito | EurekAlert!

Further reports about: electrode electrodes split waves yttrium

More articles from Physics and Astronomy:

nachricht Electrons use the zebra crossing
17.12.2018 | Universität Stuttgart

nachricht Data storage using individual molecules
17.12.2018 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>