Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smallest cavity for light realized by graphene plasmons

15.06.2020

Miniaturization has enabled so many unfathomable dreams. Shrinking down electronic circuits has allowed us to access technology like smartphones, health watches, medical probes, nano-satellites, unthinkable a couple decades ago. Just imagine that in the course of 60 years, the transistor has gone from being the size of your hand palm to 14 nanometers in dimension, 1000 times smaller than the diameter of a hair.

Miniaturization has pushed technology to a new era of optical circuitry. But, in parallel, it has also triggered new challenges and obstacles to overcome, for example, on how to deal with controlling and guiding light at the nanometer scale.


Artistic illustration of the light compressed below the silver nanocubes randomly placed over the graphene-based heterostructure.

Image credit: Matteo Ceccanti / ICFO

New techniques have been on the rise searching for ways to confine light into extremely tiny spaces, millions of times smaller than current ones. Researchers had earlier on found that metals can compress light below the wavelength-scale (diffraction limit).

In that aspect, Graphene - a material composed from a single layer of carbon atoms, with exceptional optical and electrical properties, is capable of guiding light in the form of "plasmons", which are oscillations of electrons that are strongly interacting with light.

These graphene plasmons have a natural ability to confine light to very small spaces. However, until now it was only possible to confine these plasmons in one direction, while the actual ability of light to interact with small particles, like atoms and molecules, resides in the volume that it can be compressed into. This type of confinement, in all three dimensions, is commonly regarded as an optical cavity.

In a recent study published in Science, ICFO researchers Itai Epstein, David Alcaraz, Varum-Varma Pusapati, Avinash Kumar, Tymofiy Khodkow, led by ICREA Prof. at ICFO Frank Koppens, in collaboration with researchers from MIT, Duke University, Université Paris-Saclay, and Universidad do Minho, have succeeded to build a new type of cavity for graphene plasmons, by integrating metallic cubes of nanometer sizes over a graphene sheet.

Their approach enabled to realize the smallest optical cavity ever built for infrared light, which is based on these plasmons.

In their experiment they used silver nanocubes of 50 nanometers in size, which were sprinkled randomly on top of the graphene sheet, with no specific pattern or orientation. This allowed each nanocube, together with graphene, to act as a single cavity.

Then they sent infrared light through the device and observed how the plasmons propagated into the space between the metal nanocube and the graphene, being compressed only to that very small volume.

As Itai Epstein, first author of the study, comments, "the main obstacle that we encountered in this experiment resided in the fact that the wavelength of light in the infrared range is very large and the cubes are very small, about 200 times smaller, so it is extremely difficult to make them interact with each other."

In order to overcome this, they used a special phenomenon - when the graphene plasmons interacted with the nanocubes, they were able to generate a special resonance, called a magnetic resonance. As Epstein clarifies, "A unique property of the magnetic resonance is that it can act as a type of antenna that bridges the difference between the small dimensions of the nanocube and the large scale of the light."

Thus, the generated resonance maintained the plasmons moving between the cube and graphene in a very small volume, which is ten billion times smaller than the volume of regular infrared light, something never achieved before in optical confinement. Even more so, they were able to see that the single graphene-cube cavity, when interacting with the light, acted as a new type of nano-antenna that is able to scatter the infrared light very efficiently.

The results of the study are extremely promising for the field of molecular and biological sensing, important for medicine, biotechnology, food inspection or even security, since this approach is capable of intensifying the optical field considerably and thus detect molecular materials, which usually respond to infrared light.

As Prof. Koppens states "such achievement is of great importance because it allows us to tune the volume of the plasmon mode to drive their interaction with small particles, like molecules or atoms, and be able to detect and study them.

We know that the infrared and Terahertz ranges of the optical spectrum provide valuable information about vibrational resonances of molecules, opening the possibility to interact and detect molecular materials as well as use this as a promising sensing technology".

REFERENCE

Far-field Excitation of Single Graphene Plasmon Cavities with Ultra-compressed Mode-volumes, Itai Epstein, David Alcaraz, Zhiqin Huang, Varun-Varma Pusapati, Jean-Paul Hugonin, Avinash Kumar, Xander M. Deputy, Tymofiy Khodkov, Tatiana G. Rappoport, Jin-Yong Hong, Nuno M. R. Peres, Jing Kong, David R. Smith, and Frank H. L. Koppens, Science (2020). https://science.sciencemag.org/cgi/doi/10.1126/science.abb1570

ABOUT ICFO

ICFO was founded by the Government of Catalonia and the Universitat Politècnica de Catalunya (UPC), both of which are members of its board of trustees along with the Cellex and Mir-Puig Foundations, philanthropic entities that have played a critical role in the advancement of the institute. Located in the Mediterranean Technology Park in the metropolitan area of Barcelona, the institute currently hosts 400 people, organized in 25 research groups in 60 state-of-the-art research laboratories. Research lines encompass diverse areas in which photonics plays a decisive role, with an emphasis on basic and applied themes relevant to medicine and biology, advanced imaging techniques, information technologies, a range of environmental sensors, tunable and ultra-fast lasers, quantum science, photovoltaics and the properties and applications of nano-materials such as graphene, among others. In addition to two state awarded Severo Ochoa accreditations of excellence, ICFOnians have secured 15 ICREA Professorships and 37 European Research Council grants. ICFO is proactive in fostering entrepreneurial activities, spin-off creation, and creating collaborations and links between industry and ICFO researchers. To date, ICFO has helped create 7 start-up companies.

Media Contact

Alina Hirschmann
alina.hirschmann@icfo.eu
0034-935-542-246

http://www.icfo.es

Alina Hirschmann | EurekAlert!

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>