Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow motion: antiprotons unravel atoms

10.11.2008
Theories on atomic reactions are being tested in collision experiments using a very slow beam of antiprotons

Quantum mechanics makes it easy to describe hydrogen, the simplest atom, but bigger atoms are more complicated owing to interactions between their electrons. It is especially difficult to predict the dynamics of atomic reactions during a collision. Now a team including RIKEN researchers has shed more light on this problem by performing collision experiments with slow beams of particles called antiprotons (1).

The researchers, based at the CERN particle accelerator complex in Switzerland, bombarded helium atoms with antiprotons. There is particular demand to do this with very slow antiproton beams, because current theories may not be accurate for low-energy collisions.

“Ionization by an antiproton, a unique heavy negative particle, is in itself quite exotic,” explains RIKEN scientist Yasunori Yamazaki. “In addition to this, helium is one of the most important targets to study collision dynamics because it has two electrons with a strong correlation between them.”

At CERN, antiprotons are produced in a nuclear reaction which gives them very high energies measured in billions of electron volts. They are then collected in an AD (antiproton decelerator), cooled and decelerated, so that their energies are reduced to a few million electron volts.

Yamazaki and co-workers constructed a new ‘radio frequency quadrupole decelerator’ and a ‘multi-ring trap’ to reduce the antiproton energy further down to a fraction of an electron volt, before re-accelerating them to 3,000–25,000 electron volts. This corresponds to speeds around 6,000 meters per second—very slow in particle accelerator terms.

The researchers directed their beam of slow antiprotons onto a jet of helium and argon, and monitored the energies of ions created. Their results show that the new theoretical models of low energy reactions are working, as Yamazaki explains.

“The previous experimental data did not agree with any reasonable theories, so there were big discussions on whether we forgot to include some important effects,” he says. “The good news is that it looks like our understanding on the collision dynamics of a slow antiproton and helium atom is now within satisfactory levels.”

Yamazaki and co-workers plan to develop more sophisticated equipment in order to achieve even lower antiproton energies, and observe not only the ions created during collisions, but also the electrons ‘knocked off’ the atoms. At lower energies the antiproton may get trapped in an orbit of the target atom, creating an interesting ‘molecule’ called an antiprotonic atom. The data could even help scientists investigating the use of antiprotons in treating cancer.

Reference

1. Knudsen, H., Kristiansen, H.-P.E., Thomsen, H.D., Uggerhøj, U.I., Ichioka, T., Møller, S.P., Hunniford, C.A., McCullough, R.W., Charlton, M., Kuroda, Y., et al. Ionization of helium and argon by very slow antiproton impact. Physical Review Letters 101, 043201 (2008).

The corresponding author for this highlight is based at the RIKEN Atomic Physics Laboratory

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/578/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>