Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slip-and-slide power generators

25.05.2012
Researchers from Vestfold University College in Norway have created a simple, efficient energy harvesting device that uses the motion of a single droplet to generate electrical power.

The new technology could be used as a power source for low-power portable devices, and would be especially suitable for harvesting energy from low frequency sources such as human body motion, write the authors in a paper accepted to the American Institute of Physics' (AIP) journal Applied Physics Letters.

The harvester produces power when an electrically conductive droplet (mercury or an ionic liquid) slides along a thin microfabricated material called an electret film, which has a permanent electric charge built into it during deposition.

Cyclic tilting of the device causes the droplet to accelerate across the film's surface; the maximum output voltage (and power) occurs when the sliding droplet reaches its maximum velocity at one end of the film.

A prototype of the fluidic energy harvester demonstrated a peak output power at 0.18 microwatts, using a single droplet 1.2 millimeters in diameter sliding along a 2-micrometer-thick electret film.

Title: Power Generation from Conductive Droplet Sliding on Electret Film
Journal: Applied Physics Letters
Authors: Zhaochu Yang (1), Einar Halvorsen (1), and Tao Dong (1)
(1) Department of Micro and Nano Systems Technology (IMST), Vestfold University College, Horten, Norway

Jennifer Lauren Lee | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

nachricht The geometry of an electron determined for the first time
23.05.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>