Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SLAC's high-speed 'electron camera' films molecular movie in HD

17.04.2019

First direct look at how atoms move when a ring-shaped molecule breaks apart could boost our understanding of fundamental processes of life

With an extremely fast "electron camera" at the Department of Energy's SLAC National Accelerator Laboratory, researchers have made the first high-definition "movie" of ring-shaped molecules breaking open in response to light. The results could further our understanding of similar reactions with vital roles in chemistry, such as the production of vitamin D in our bodies.


Researchers created the first atomic-resolution movie of the ring-opening reaction of 1,3-cyclohexadiene (CHD) with an 'electron camera' called UED. Bottom: The UED electron beam accurately measures the distances between pairs of atoms in the CHD molecule as the reaction proceeds. The distance between each pair is represented by a colored line in the graph. Variations in the distances as the molecule changes shape represent the molecular movie. Top: Visualization of the molecular structure corresponding to the distance distribution measured at about 380 femtoseconds into the reaction (dashed line at bottom).

Credit: David Sanchez/Stanford University


This illustration shows snapshots of the light-triggered transition of the ring-shaped 1,3-cyclohexadiene (CHD) molecule (background) to its stretched-out 1,3,5-hexatriene (HT) form (foreground). The snapshots were taken with SLAC's high-speed "electron camera" - an instrument for ultrafast electron diffraction (UED).

Credit: Greg Stewart/SLAC National Accelerator Laboratory

A previous molecular movie of the same reaction, produced with SLAC's Linac Coherent Light Source (LCLS) X-ray laser, for the first time recorded the large structural changes during the reaction. Now, making use of the lab's ultrafast electron diffraction (UED) instrument, these new results provide high-resolution details - showing, for instance, how a bond in the ring breaks and atoms jiggle around for extended periods of time.

"The details of this ring-opening reaction have now been settled," said Thomas Wolf, a scientist at the Stanford Pulse Institute of SLAC and Stanford University and leader of the research team. "The fact that we can now directly measure changes in bond distances during chemical reactions allows us to ask new questions about fundamental processes stimulated by light."

SLAC scientist Mike Minitti, who was involved in both studies, said, "The results demonstrate how our unique instruments for studying ultrafast processes complement each other. Where LCLS excels in capturing snapshots with extremely fast shutter speeds of only a few femtoseconds, or millionths of a billionth of a second, UED cranks up the spatial resolution of these snapshots. This is a great result, and the studies validate one another's findings, which is important when making use of entirely new measurement tools."

LCLS Director Mike Dunne said, "We're now making SLAC's UED instrument available to the broad scientific community, in addition to enhancing the extraordinary capabilities of LCLS by doubling its energy reach and transforming its repetition rate. The combination of both tools uniquely positions us to enable the best possible studies of fundamental processes on ultra-small and ultrafast scales."

The team reported their results today in Nature Chemistry.

Molecular movie in HD

This particular reaction has been studied many times before: When a ring-shaped molecule called 1,3-cyclohexadiene (CHD) absorbs light, a bond breaks and the molecule unfolds to form the almost linear molecule known as 1,3,5-hexatriene (HT). The process is a textbook example of ring-opening reactions and serves as a simplified model for studying light-driven processes during vitamin D synthesis.

In 2015, researchers studied the reaction with LCLS, which resulted in the first detailed molecular movie of its kind and revealed how the molecule changed from a ring to a cigar-like shape after it was struck by a laser flash. The snapshots, which initially had limited spatial resolution, were brought further into focus through computer simulations.

The new study used UED - a technique in which researchers send an electron beam with high energy, measured in millions of electronvolts (MeV), through a sample - to precisely measure distances between pairs of atoms. Taking snapshots of these distances at different intervals after an initial laser flash and tracking how they change allows scientists to create a stop-motion movie of the light-induced structural changes in the sample.

The electron beam also produces strong signals for very dilute samples, such as the CHD gas used in the study, said SLAC scientist Xijie Wang, director of the MeV-UED instrument. "This allowed us to follow the ring-opening reaction over much longer periods of time than before."

Surprising details

The new data revealed several surprising details about the reaction.

They showed that the movements of the atoms accelerated as the CHD ring broke, helping the molecules rid themselves of excess energy and accelerating their transition to the stretched-out HT form.

The movie also captured how the two ends of the HT molecule jiggled around as the molecules became more and more linear. These rotational motions went on for at least a picosecond, or a trillionth of a second.

"I would have never thought these motions would last that long," Wolf said. "It demonstrates that the reaction doesn't end with the ring opening itself and that there is much more long-lasting motion in light-induced processes than previously thought."

A method with potential

The scientists also used their experimental data to validate a newly developed computational approach for including the motions of atomic nuclei in simulations of chemical processes.

"UED provided us with data that have the high spatial resolution needed to test these methods," said Stanford chemistry professor and PULSE researcher Todd Martinez, whose group led the computational analysis. "This paper is the most direct test of our methods, and our results are in excellent agreement with the experiment."

In addition to advancing the predictive power of computer simulations, the results will help deepen our understanding of life's fundamental chemical reactions, Wolf said: "We're very hopeful our method will pave the way for studies of more complex molecules that are even closer to the ones used in life processes."

###

Other research institutions involved in this study were the University of York, UK; University of Nebraska-Lincoln; University of Potsdam, Germany; University of Edinburgh, UK; and Brown University. Large parts of this work were financially supported by the DOE Office of Science. SLAC's MeV-UED instrument is part of LCLS, a DOE Office of Science user facility.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit http://www.slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Andrew Gordon
agordon@slac.stanford.edu
650-926-2282

 @SLAClab

http://www.slac.stanford.edu 

Andrew Gordon | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41557-019-0252-7

More articles from Physics and Astronomy:

nachricht Hubble discovers mysterious black hole disc
12.07.2019 | ESA/Hubble Information Centre

nachricht What happens when you explode a chemical bond?
12.07.2019 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>