Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size-specific cracking shakes out at the nanoscale

05.08.2008
Certain sizes of nanostructures may be more susceptible to failure by fracture than others.

That is the result of new research by LLNL’s Michael Manley and colleagues from Los Alamos National Laboratory that appears as a Rapid Communication in the journal Physical Review B.

As the size of a structure gets to the nanoscale, atomic vibrations (also known as phonons) begin to feel its size and shape in an effect called phonon confinement.

While these effects play an important role in thermal transport, electronic processes and thermodynamic stability, not much is known about their role in fracture.

However, in the new research, the scientists found that at a certain thickness, excess entropy of the confined vibrations reduces the fracture energy and results in a size-specific fracture.

Manley and the Los Alamos team found that particles formed during the reaction of cerium with hydrogen (cerium hydride) fractured into stacked plates. The plates exhibited two thickness scales, one at 100 nanometers, and an additional scale at 30-nanometer scale.

“When the fracture results in nanoplates, it leads to a low level of fracture energy at a certain size, resulting in a size-specific fracture,” Manley said. “This has important implications for the design of nanostructures.”

“It also may prove useful in the deliberate creation of large quantities of stable nanostructures,” he said.

Manley said the time scale for phonon excitations typically occurs in picoseconds, while crack growth is a slower process involving the simultaneous displacement of many planes of atoms over a relatively large distance compared to atomic vibrations. “Thus, the phonon confinement should occur instantaneously as the crack propagates,” he said.

Unlike with thermodynamic stability, fracture is a weak-link process, meaning that even a local weakening could be important in dictating the fracture process.

“This could have important consequences, not only for small materials, but also for the way cracks propagate in nanostructured bulk materials,” Manley said.

The research appears in the Aug. 1 online issue of Physical Review B.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>