Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size matters in the giant magnetoresistance effect in semiconductors

16.10.2013
In a paper appearing in Nature's Scientific Reports, Dr. Ramesh Mani, professor of physics and astronomy at Georgia State University, reports that a giant magnetoresistance effect depends on the physical size of the device in the GaAs/AlGaAs semiconductor system.

Giant magnetoresistance indicates a large change in the electrical resistance with the application of a small magnetic field. This effect can be used to detect the presence of small magnetic fields. Magnetic sensors based on this concept are used to read out information stored in magnetic particles on rotating platters in computer hard disks.

Other types of magnetic sensors are also used in brushless electric motors within cooling fans in computers, and as wheel speed sensors in some automobiles. Semiconductors are materials with electrical characteristics that fall between those of insulators and metals. Such materials are widely used, especially in electronics.

In research that is supported by grants from the U.S. Department of Energy and the U.S. Army Research Office, Mani studied the magnetoresistance in flat, very thin sheets of electrons in the ultra high quality GaAs/AlGaAs semiconductor with his colleagues Annika Kriisa from Emory University and Werner Wegscheider from the ETH-Zurich in Switzerland.

The researchers found that the change in the resistance or resistivity with the magnetic field depends on the size of the device. They demonstrated that, under the application of a magnetic field, wide devices develop a smaller and quicker change, while small devices develop a bigger but slower change in the resistivity. The resistance or resistivity of a material to the flow of electricity is a technologically important property, especially in semiconductors.

In a typical semiconductor, the disorder is so strong that electrons undergo many collisions over a short distance - distance much less than millimeters. Then, the edges or walls of the device have no influence on measured properties because the electrons lose memory of one edge or wall by the time they get to another.

The strong sensitivity of the magnetoresistance to the size of the device observed in this research indicates that scattering with the walls of the device might be making a substantial contribution to electron scattering. This result testifies to the high quality of the semiconductor used in this research, produced by Prof. Werner Wegscheider at ETH-Zurich in Switzerland.

This research team developed a model to understand the observations and deduced that when the semiconductor system becomes of even better quality, the change in the resistance under the application of a magnetic field will become even bigger. Indeed, the change might become so big that the resistance vanishes entirely in the small magnetic field.

LaTina Emerson | EurekAlert!
Further information:
http://www.gsu.edu

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>