Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single atoms as catalysts

02.09.2019

Incorporating individual metal atoms into a surface in the right way allows their chemical behavior to be adapted. This makes new, better catalysts possible.

They make our cars more environmentally friendly and they are indispensable for the chemical industry: catalysts make certain chemical reactions possible - such as the conversion of CO into CO2 in car exhaust gases - that would otherwise happen very slowly or not at all.


Gareth Parkinson (left) and Zdenek Jakub

TU Wien

Surface physicists at the TU Wien have now achieved an important breakthrough; metal atoms can be placed on a metal oxide surface so that they show exactly the desired chemical behavior. Promising results with iridium atoms have just been published in the renowned journal "Angewandte Chemie".

Smaller and smaller – all the way down to the single atom

For car exhaust gases, solid catalysts such as platinum are used. The gas comes into contact with the metal surface, where it reacts with other gas components. "Only the outermost layer of metal atoms can play a role in this process. The gas can never reach the atoms inside the metal so they are basically wasted," says Prof. Gareth Parkinson from the Institute of Applied Physics at TU Wien.

It therefore makes sense to construct the catalyst not as a single large block of metal, but in the form of fine granules. This makes the number of active atoms as high as possible. Since many important catalyst materials (such as platinum, gold or palladium) are very expensive, cost is a major issue.

For years, efforts have been made to turn the catalysts into finer and finer particles. In the best case scenario, the catalyst could be made up of individual catalyst atoms, and all would be active in just the right way. This is easier said than done, however. "When metal atoms are deposited on a metal oxide surface, they usually have a very strong tendency to clump together and form nanoparticles," explained Gareth Parkinson.

Instead of attaching the active metal atoms to a surface, it is also possible to incorporate them into a molecule with cleverly selected neighboring atoms. The molecules and reactants are then dissolved into a liquid, and the chemical reactions happen there.

Both variants have advantages and disadvantages. Solid metal catalysts have a higher throughput, and can be run in continuous operation. With liquid catalysts, on the other hand, it is easier to tailor the molecules as required, but the product and the catalyst have to be separated again afterwards.

The best of both worlds

Parkinson's team at TU Wien has is working to combine the advantages of both variants: "For years we have been working on processing metal oxide surfaces in a controlled manner and imaging them under the microscope," says Gareth Parkinson. "Thanks to this experience, we are now one of a few laboratories in the world that can incorporate metal atoms into a solid surface in a well defined way.”

In much the same way as liquid catalyst molecules are designed, it is becoming possible to choose the neighbouring atoms in the surface that would be the most favourable from a chemical point of view – and special surface-physics tricks make it possible to incorporate them into a solid matrix on a special iron oxide surface. This can be used, for example, to convert carbon monoxide into carbon dioxide.

Optimal control

"Single atom catalysis is a new, extremely promising field of research," says Gareth Parkinson. "There have already been exciting measurements with such catalysts, but so far it was not really known why they worked so well. Now, for the first time, we have full control over the atomic properties of the surface and can clearly prove this by means of images from the electron microscope".

This research was funded by the Austrian Science Fund START prize, awarded to Gareth Parkinson in 2015.
Original Publication:

Z. Jakub et al., Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst, Angew. Chem.2019,131, DOI: https://doi.org/10.1002/ange.201907536

Wissenschaftliche Ansprechpartner:

Prof. Gareth Parkinson
Institute of Applied Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Vienna
T +43-1-58801-13473
gareth.parkinson@tuwien.ac.at

Originalpublikation:

Z. Jakub et al., Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst, Angew. Chem.2019,131, DOI: https://doi.org/10.1002/ange.201907536

Dr. Florian Aigner | Technische Universität Wien

More articles from Physics and Astronomy:

nachricht Non-volatile control of magnetic anisotropy through change of electric polarization
12.11.2019 | Kanazawa University

nachricht Thorium superconductivity: Scientists discover new high-temperature superconductor
11.11.2019 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

How the Zika virus can spread

11.11.2019 | Life Sciences

Researchers find new potential approach to type 2 diabetes treatment

11.11.2019 | Health and Medicine

Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction

11.11.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>