Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single atom stores quantum information

03.05.2011
A powerful quantum computer could be designed with an incredibly tiny memory

A data memory can hardly be any smaller: researchers working with Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching have stored quantum information in a single atom. The researchers wrote the quantum state of single photons, i.e. particles of light, into a rubidium atom and read it out again after a certain storage time. This technique can be used in principle to design powerful quantum computers and to network them with each other across large distances.


One single atom as data memory: Researchers at the Max Planck Institute of Quantum Optics wrote quantum information into a rubidium atom between two mirrors and read it out again after a certain storage time. © Andreas Neuzner

Quantum computers will one day be able to cope with computational tasks in no time where current computers would take years. They will take their enormous computing power from their ability to simultaneously process the diverse pieces of information which are stored in the quantum state of microscopic physical systems, such as single atoms and photons.

In order to be able to operate, the quantum computers must exchange these pieces of information between their individual components. Photons are particularly suitable for this, as no matter needs to be transported with them. Particles of matter however will be used for the information storage and processing. Researchers are therefore looking for methods whereby quantum information can be exchanged between photons and matter. Although this has already been done with ensembles of many thousands of atoms, physicists at the Max Planck Institute of Quantum Optics in Garching have now proved that quantum information can also be exchanged between single atoms and photons in a controlled way.

Using a single atom as a storage unit has several advantages - the extreme miniaturization being only one, says Holger Specht from the Garching-based Max Planck Institute, who was involved in the experiment. The stored information can be processed by direct manipulation on the atom, which is important for the execution of logical operations in a quantum computer. “In addition, it offers the chance to check whether the quantum information stored in the photon has been successfully written into the atom without destroying the quantum state,” says Specht. It is thus possible to ascertain at an early stage that a computing process must be repeated because of a storage error.

The fact that no one had succeeded until very recently in exchanging quantum information between photons and single atoms was because the interaction between the particles of light and the atoms is very weak. Atom and photon do not take much notice of each other, as it were, like two party guests who hardly talk to each other, and can therefore exchange only a little information. The researchers in Garching have enhanced the interaction with a trick. They placed a rubidium atom between the mirrors of an optical resonator, and then used very weak laser pulses to introduce single photons into the resonator. The mirrors of the resonator reflected the photons to and fro several times, which strongly enhanced the interaction between photons and atom. Figuratively speaking, the party guests thus meet more often and the chance that they talk to each other increases.

The photons carried the quantum information in the form of their polarization. This can be left-handed (the direction of rotation of the electric field is anti-clockwise) or right-handed (clock-wise). The quantum state of the photon can contain both polarizations simultaneously as a so-called superposition state. In the interaction with the photon the rubidium atom is usually excited and then loses the excitation again by means of the probabilistic emission of a further photon. The Garching-based researchers did not want this to happen. On the contrary, the absorption of the photon was to bring the rubidium atom into a definite, stable quantum state. The researchers achieved this with the aid of a further laser beam, the so-called control laser, which they directed onto the rubidium atom at the same time as it interacted with the photon.

The spin orientation of the atom contributes decisively to the stable quantum state generated by control laser and photon. Spin gives the atom a magnetic moment. The stable quantum state, which the researchers use for the storage, is thus determined by the orientation of the magnetic moment. The state is characterized by the fact that it reflects the photon’s polarization state: the direction of the magnetic moment corresponds to the rotational direction of the photon’s polarization, a mixture of both rotational directions being stored by a corresponding mixture of the magnetic moments.

This state is read out by the reverse process: irradiating the rubidium atom with the control laser again causes it to re-emit the photon which was originally incident. In the vast majority of cases, the quantum information in the read-out photon agrees with the information originally stored, as the physicists in Garching discovered. The quantity that describes this relationship, the so-called fidelity, was more than 90 percent. This is significantly higher than the 67 percent fidelity that can be achieved with classical methods, i.e. those not based on quantum effects. The method developed in Garching is therefore a real quantum memory.

The physicists measured the storage time, i.e. the time the quantum information in the rubidium can be retained, as around 180 microseconds. “This is comparable with the storage times of all previous quantum memories based on ensembles of atoms,” says Stephan Ritter, another researcher involved in the experiment. Nevertheless, a significantly longer storage time is necessary for the method to be used in a quantum computer or a quantum network. There is also a further quality characteristic of the single-atom quantum memory from Garching which could be improved: the so-called efficiency. It is a measure of how many of the irradiated photons are stored and then read out again. This was just under 10 percent.

The storage time is mainly limited by magnetic field fluctuations from the laboratory surroundings, says Ritter. “It can therefore be increased by storing the quantum information in quantum states of the atoms which are insensitive to magnetic fields.” The efficiency is limited by the fact that the atom does not sit still in the centre of the resonator, but moves. This causes the strength of the interaction between atom and photon to decrease. The researchers can thus also improve the efficiency: by greater cooling of the atom, i.e. by further reducing its kinetic energy.

The researchers at the Max Planck Institute in Garching now want to work on these two improvements. “If this is successful, the prospects for the single-atom quantum memory would be excellent,” says Stephan Ritter. The interface between light and individual atoms would make it possible to network more atoms in a quantum computer with each other than would be possible without such an interface; a fact that would make such a computer more powerful. Moreover, the exchange of photons would make it possible to quantum mechanically entangle atoms across large distances. The entanglement is a kind of quantum mechanical link between particles which is necessary to transport quantum information across large distances. The technique now being developed at the Max Planck Institute of Quantum Optics could some day thus become an essential component of a future “quantum Internet”.

Contact
Dr. Stephan Ritter
Max Planck Institute of Quantum Optics, Garching
Phone: +49 89 32905-728
Fax: +49 89 32905-395
Email: Stephan.Ritter@mpq.mpg.de
Prof. Dr. Dr. habil. Gerhard Rempe
Max Planck Institute of Quantum Optics, Garching
Phone: +49 89 32905-701
Fax: +49 89 32905-311
Email: gerhard.rempe@mpq.mpg.de
Original Publication
Holger P. Specht, Christian Nölleke, Andreas Reiserer, Manuel Uphoff, Eden Figueroa, Stephan Ritter, and Gerhard Rempe
A Single-Atom Quantum Memory
Nature, Advance Online Publication, May 1, 2011; DOI: 10.1038/nature09997

Christian Meier | Max-Planck-Institute
Further information:
http://www.mpg.de/4290741/Single_Atom

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>