Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore and Australian scientists build a machine to see all possible futures

15.04.2019

In the 2018 movie Infinity War, a scene featured Dr. Strange looking into 14 million possible futures to search for a single timeline where the heroes would be victorious. Perhaps he would have had an easier time with help from a quantum computer. A team of researchers from Nanyang Technological University, Singapore (NTU Singapore) and Griffith University in Australia have constructed a prototype quantum device that can generate all possible futures in a simultaneous quantum superposition.

"When we think about the future, we are confronted by a vast array of possibilities," explains Assistant Professor Mile Gu of NTU Singapore, who led development of the quantum algorithm that underpins the prototype "These possibilities grow exponentially as we go deeper into the future. For instance, even if we have only two possibilities to choose from each minute, in less than half an hour there are 14 million possible futures. In less than a day, the number exceeds the number of atoms in the universe."


Unlike classical particles, quantum particles can travel in a quantum superposition of different directions. Mile Gu, together with researchers from Griffith harnessed this phenomena to design quantum devices that can generate a quantum superposition of all possible futures.

Credit: NTU, Singapore

What he and his research group realised, however, was that a quantum computer can examine all possible futures by placing them in a quantum superposition - similar to Schrödinger's famous cat that is simultaneously alive and dead.

To realise this scheme, they joined forces with the experimental group led by Professor Geoff Pryde at Griffith University. Together, the team implemented a specially devised photonic quantum information processor in which the potential future outcomes of a decision process are represented by the locations of photons - quantum particles of light. They then demonstrated that the state of the quantum device was a superposition of multiple potential futures, weighted by their probability of occurrence.

"The functioning of this device is inspired by the Nobel Laureate Richard Feynman," says Dr Jayne Thompson, a member of the Singapore team. "When Feynman started studying quantum physics, he realized that when a particle travels from point A to point B, it does not necessarily follow a single path. Instead, it simultaneously transverses all possible paths connecting the points. Our work extends this phenomenon and harnesses it for modelling statistical futures."

The machine has already demonstrated one application - measuring how much our bias towards a specific choice in the present impacts the future. "Our approach is to synthesise a quantum superposition of all possible futures for each bias." explains Farzad Ghafari, a member of the experimental team, "By interfering these superpositions with each other, we can completely avoid looking at each possible future individually. In fact, many current artificial intelligence (AI) algorithms learn by seeing how small changes in their behaviour can lead to different future outcomes, so our techniques may enable quantum enhanced AIs to learn the effect of their actions much more efficiently."

The team notes while their present prototype simulates at most 16 futures simultaneously, the underlying quantum algorithm can in principle scale without bound. "This is what makes the field so exciting," says Pryde. "It is very much reminiscent of classical computers in the 1960s. Just as few could imagine the many uses of classical computers in the 1960s, we are still very much in the dark about what quantum computers can do. Each discovery of a new application provides further impetus for their technological development."

Media Contact

Mohamed Fadly
mfadly@ntu.edu.sg
656-513-8644

https://cos.ntu.edu.sg 

Mohamed Fadly | EurekAlert!

More articles from Physics and Astronomy:

nachricht Quantum simulation more stable than expected
15.04.2019 | Universität Innsbruck

nachricht New algorithm optimizes quantum computing problem-solving
11.04.2019 | Tohoku University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

Im Focus: Newly discovered mechanism of plant hormone auxin acts the opposite way

Auxin accumulation at the inner bend of seedling leads to growth inhibition rather than stimulation as in other plant tissues.

Increased levels of the hormone auxin usually promote cell growth in various plant tissues. Chinese scientists together with researchers from the Institute of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

European Geosciences Union meeting: ExoMars press conference, live streams, on-site registration

02.04.2019 | Event News

 
Latest News

Bacteria surrounding coral reefs change in synchrony, even across great distance

15.04.2019 | Life Sciences

New method inverts the self-assembly of liquid crystals

15.04.2019 | Materials Sciences

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>