Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simpler interferometer can fine tune even the quickest pulses of light

12.07.2018

If you want to get the greatest benefit from a beam of light - whether to detect a distant planet or remedy an aberration in the human eye - you need to be able to measure its beam front information.

Now a University of Rochester research team has devised a much simpler way to measure beams of light-- even powerful, superfast pulsed laser beams that require very complicated devices to characterize their properties.


At left is the basic design of a traditional interferometer, and at right the more compact design of the interferometer created in the lab of optics professor Chunlei Guo. This new wedge reversal shearing interferometer has the added advantage of being able to measure the beam front information or wave front of powerful, superfast pulsed laser beams,

Credit: University of Rochester illustration / Michael Osadciw

The new device will give scientists an unprecedented ability to fine tune even the quickest pulses of light for a host of applications, says Chunlei Guo, professor of optics, who has used femtosecond pulsed laser beams to treat metal surfaces in remarkable ways. And it could render traditional instruments for measuring light beams obsolete.

"This is a revolutionary step forward," says Guo. "In the past we've had to characterize light beams with very complicated, cumbersome interferometric devices, but now we can do it with just one optical cube. It is super compact, super reliable, and super robust."

The device, developed by Guo and Billy Lam, a PhD student in his lab, is described in Nature Light: Science and Applications. Called a wedged reversal shearing interferometer, it consists of a prism cube, assembled from two right-angle prisms.

-The cube has two angled entrances and splits the beam into two parts.

When the beam exits the cube, the reflected light from the left portion of the beam and the transmitted light from the right portion of the beam are emitted from one face of the cube. Conversely, the transmitted light from left portion of the beam and reflected light from the right portion are emitted from another face of the cube.

This creates an extremely stable "Interference" pattern for Guo and his team to measure all the key spatial characteristics of a light beam- its amplitude, phase, polarization, wavelength, and, in the case of pulsed beams, the duration of the pulses. And not just as an average along the entire beam, but at each point of the beam.

This is especially important in imaging applications, Guo says. "If a beam is not perfect, and there is a defect on the image, it's important to know the defect is because of the beam, and not because of a variation in the object you are imaging," Guo says.

"Ideally, you should have a perfect beam to do imaging. And if you don't, you better know it, and then you can correct your measurements. Ultrafast lasers are key for recording dynamic processes, and having an extremely simple but robust device to characterize ultrafast or any type of laser beams are surely important."

Albert Michaelson demonstrated the first interferometer in the 1880s, using a beam splitter and two mirrors. The core principles remain the same in interferometers used today.

The beam splitter sends the split light on different optical paths towards the mirrors. The mirrors then reflect each split beam back so they recombine at the beam splitter. The different paths taken by the two split beams causes a phase difference which creates an interference fringe pattern. This pattern is then analyzed by a detector to evaluate the wave characteristics.

This approach has worked reasonably well for characterizing continuous wave laser beams because they have a long "coherence" time, allowing them to interfere even after being split, sent along two paths of different lengths, and then recombined, Guo says.

However, given the short duration of a femtosecond pulsed laser beam - about a millionth of a billionth of a second - "Simple interferometer like the shear plate, where the beams reflected from the front and back surface interfere, no longer works." Guo says. Femtosecond pulsed laser beams would quickly lose their coherence along non-equidistant pathways of a typical interferometer.

The prism cube is designed in such a way to eliminate that problem, he says. The prism cube is the first single element interferometer that can characterize femtosecond or even shorter laser pulses.

Femtosecond laser pulses offer two advantages. Their incredibly short duration is comparable to the timescales at which "very many fundamental processes in nature occur," Guo says. Those processes include an electron moving around an atom's core, the "lattice" vibration of atoms and molecules, and the unfolding of biological proteins. So, femtosecond last pulses provide researchers a tool to study and manipulate those processes.

Femtosecond laser pulses are also incredibly powerful. "The peak power of a femtosecond laser pulse in my laboratory is equivalent to the entire North American power grid," Guo says. That enables his lab to use the laser pulses to etch metal surfaces with new properties, so they become super water repellent or water attracting.

Guo's lab was recently awarded $1.5 million grants from the Bill & Melinda Gates Foundation - following three previous grants totaling $600,000 from the foundation - to develop sanitation technology with extremely water-repellent, or superhydrophobic, materials.

Media Contact

Bob Marcotte
bmarcotte@ur.rochester.edu
585-329-3583

 @UofR

http://www.rochester.edu 

Bob Marcotte | EurekAlert!

More articles from Physics and Astronomy:

nachricht Bridging the nanoscale gap: A deep look inside atomic switches
22.07.2019 | Tokyo Institute of Technology

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Bridging the nanoscale gap: A deep look inside atomic switches

22.07.2019 | Physics and Astronomy

Regulation of root growth from afar: How genes from leaf cells affect root growth

22.07.2019 | Life Sciences

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>