Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Chip "Replaces" Rare Earths

28.02.2011
Rare earths are an expensive and necessary component of strong permanent magnets.

However, their use for this purpose can be optimised and thereby reduced. This has been demonstrated in computer simulations by a Special Research Program funded by the Austrian Science Fund FWF.


A balanced perspective on classical theories of philosophical gender research. Source: Thomas Schrefl

The results, which will be presented in the US tomorrow, show that such magnets may contain local deformations in the crystal lattice of the material. These deformations are above all located at the boundary of material grains. According to the calculations of the St. Pölten University of Applied Sciences, the magnetic force of the material is weakened in these areas. This could be avoided by optimising the material structure, which would save resources by reducing the amount of rare earths required.

With an annual production of 150,000 tonnes, rare earths are really not that rare. The real problem is that they are rather difficult to extract. In view of rapidly growing global demand, a shortage is therefore imminent. Due to their particular chemical properties, rare earths are sought after for modern environmental technology. This is a good reason for the main exporter, China, to limit exports - and for other countries to optimise their use of the resource. High-end computer simulations, such as the computations from St. Pölten University of Applied Sciences, carried out as part of an FWF-funded Special Research Program, could make a major contribution to this optimization. Tomorrow, at the annual meeting of the US Minerals, Metals & Materials Society in San Diego, California, these simulations will be presented for the first time.

CRYSTAL CRISES
The team at St. Pölten University studied the exact structure of neodymium magnets. In addition to the rare earth element neodymium, the magnets consist of iron and boron. The head of the Industrial Simulations study course, Prof. Thomas Schrefl, commented on the recent findings: "Our simulations show disturbances in the crystalline structure in neodymium magnets. Such disturbances cause the magnetising direction to change in these areas. In a so-called anisotropic magnet, like the neodymium magnet, in which all parts must have the same magnetising direction, this phenomenon weakens the magnet." The team´s simulations show that such disturbances in the junctions between individual material grains occur when three different grains meet. In these triple junctions, a non-magnetic enclosure is formed and the crystal lattice near the enclosure is disturbed. In the same region, a high demagnetising field weakens the magnet further.

The influence of disturbances on the magnet´s behaviour were found in multiscale simulations that take into account several different dimensions: from the atomistic to the visible range. Conventional simulations were unable to cover this range of size until now. It was the combination of individual numerical computational methods, such as fast boundary element methods and tensor grid methods for computing the magnetic fields, which finally made it possible. The development was achieved by Prof. Schrefl´s team as part of the Special Research Program ViCoM - Vienna Computational Materials Laboratory.

COHESION THROUGH MOVEMENT
The spokesperson for the Special Research Program, Prof. Georg Kresse from the research group Computational Materials Physics at the University of Vienna, explained the aims of the Special Research Program: "We want to describe the correlated movement of electrons more accurately. This electron correlation is mainly responsible for the cohesion of solid-state bodies and molecules. An accurate description is therefore crucial for precisely predicting the mechanical, electronic and optical properties of materials."

In a total of twelve project groups, more than 50 scientists are working on describing material properties, which will be of key importance to numerous technologies of tomorrow, including microelectronics, solar technology and polymer production. What is more, the Special Research Program helps with the optimisation of magnetic and magneto-optical storage, as in high-performance permanent magnets for electric cars or wind turbines, thereby making a substantial contribution to developing future-oriented technologies. The work of this Special Research Program, which is funded by the FWF, therefore transcends mere scientific interest - as is clear from recent discussions about the availability and strategic importance of rare earths. It is a convincing testament to how insights acquired in basic research can rapidly gain unexpected import.

Scientific contact:
Prof. Dr. Thomas Schrefl
St. Pölten University of
Applied Sciences
Matthias Corvinus-Str. 15
3100 St. Pölten, Austria
T +43 / 2742 / 313 228 - 313
E thomas.schrefl@fhstp.ac.at
W http://www.fhstp.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8 1090 Vienna, Austria T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Raphaela Spadt | PR&D
Further information:
http://www.fwf.ac.at
http://www.fhstp.ac.at

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>