Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significantly more productivity in USP lasers

06.12.2016

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising: Ultrashort pulses vaporize the material so rapidly that hardly any heat remains in the workpiece. At the same time, surfaces are particularly smooth, cuts extremely precise and the process is barely dependent on the used material.


With the hybrid systems composed of freely programmable multi-beam optics and galvo scanners, a laser beam can be split into any number of beamlets.

© Fraunhofer ILT, Aachen, Germany / Volker Lannert.

This has been recognized for a long time, but it is only in the last ten years that complex laser sources have reached a level that permits 24/7 use in industry. Systems with up to 100 watts are now being sold in batches.

These systems have become established in micro-material processing, with calls in the meantime for more productivity and stronger lasers. The development of laser sources with kW power is well advanced, but a simple scaling of processes by increasing the laser power is not immediately possible without losing the high processing quality – process engineering especially beam delivery is now the bottleneck.

Which is faster? Scanners versus multi-beam optics

New USP laser sources offer improved performance through repetition rates into the MHz range or through higher pulse energies. New scanner systems with polygon mirrors show promising results for high repetition rates. In this context, the spot must be moved extremely rapidly on the workpiece to keep too many pulses from overlapping and the accumulated heat from impairing the processing quality.

Scanners enable a high level of flexibility in the contour to be processed, but they move only a single spot on the surface of the workpiece. Large surfaces with repeating patterns can be processed more efficiently with what are known as multi-beam optics.

A multi-beam optic device splits a single laser beam into numerous beamlets. This requires higher laser pulse energies so that every beamlet can also remove material. Micro-optics or diffractive optical elements that generate a set pattern from a laser beam have been tested to date. Adjusted to the application, this might be a line, a special contour or a pattern made of hundreds of single beams.

Dynamic multi-beam optics uses liquid crystals

At present, beam shaping in multi-beam optics is achieved by diffracting the laser beam on solid optical structures. Experts at Fraunhofer ILT in Aachen have now developed a system that allows the diffractive pattern to be switched at a rate of 50 hertz. To this end, they use spatial light modulators (SLM) that generate the required diffraction pattern with liquid crystals.

The researchers optimized the system and tested it together with a galvanometer scanner in an experimental setup. With suitable optics, image errors are corrected so that even large workpieces can be processed with a high degree of precision.

Programmable multi-beam optics enable a significant increase in productivity, especially in USP lasers with higher pulse energies. Applications are envisioned in microelectronics or in the texturing of surfaces, in the consumer goods sector for example.

4th UKP Workshop 2017

Productivity and process engineering when using USP lasers will be important topics at the “UKP Workshop - Ultrafast Laser Technology” on April 26 and 27, 2017 in Aachen, Germany. Specialists from laser development, process engineering and industry will be meeting there for the fourth time to discuss new results and share experience gained from practice. You will find more information on the event at www.ultrakurzpulslaser.de.

Contact

Dipl.-Phys. Patrick Gretzki
Micro and Nano Structuring Group
Telephone +49 241 8906-8078
patrick.gretzki@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html
http://www.ultrakurzpulslaser.de/en

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>