Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sibling Stars

19.08.2015

Open star clusters like the one seen here are not just perfect subjects for pretty pictures. Most stars form within clusters and these clusters can be used by astronomers as laboratories to study how stars evolve and die. The cluster captured here by the Wide Field Imager (WFI) at ESO’s La Silla Observatory is known as IC 4651, and the stars born within it now display a wide variety of characteristics.


The rich star cluster IC 4651

PR Image eso1534a

The loose speckling of stars in this new ESO image is the open star cluster IC 4651, located within the Milky Way, in the constellation of Ara (The Altar), about 3000 light-years away. The cluster is around 1.7 billion years old — making it middle-aged by open cluster standards. IC 4651 was discovered by Solon Bailey, who pioneered the establishment of observatories in the high dry sites of the Andes, and it was catalogued in 1896 by the Danish–Irish astronomer John Louis Emil Dreyer.

The Milky Way is known to contain over a thousand of these open clusters, with more thought to exist, and many have been studied in great depth. Observations of star clusters like these have furthered our knowledge of the formation and evolution of the Milky Way and the individual stars within it. They also allow astronomers to test their models of how stars evolve.

The stars in IC 4651 all formed around the same time out of the same cloud of gas [1]. These sibling stars are only bound together very loosely by their attraction to one another and also by the gas between them. As the stars within the cluster interact with other clusters and clouds of gas in the galaxy around them, and as the gas between the stars is either used up to form new stars or blown away from the cluster, the cluster’s structure begins to change. Eventually, the remaining mass in the cluster becomes small enough that even the stars can escape. Recent observations of IC 4651 showed that the cluster contains a mass of 630 times the mass of the Sun [2] and yet it is thought that it initially contained at least 8300 stars, with a total mass 5300 times that of the Sun.

As this cluster is relatively old, a part of this lost mass will be due to the most massive stars in the cluster having already reached the ends of their lives and exploded as supernovae. However, the majority of the stars that have been lost will not have died, but merely moved on. They will have been stripped from the cluster as it passed by a giant gas cloud or had a close encounter with a neighbouring cluster, or even simply drifted away.

A fraction of these lost stars may still be gravitationally bound to the cluster and surround it at a great distance. The remaining lost stars will have migrated away from the cluster to join others, or have settled elsewhere in the busy Milky Way. The Sun was probably once part of a cluster like IC 4651, until it and all its siblings were gradually separated and spread across the Milky Way.

This image was taken using the Wide Field Imager. This camera is permanently mounted at the MPG/ESO 2.2-metre telescope at the La Silla Observatory. It consists of several CCD detectors with a total of 67 million pixels and can observe an area as large as the full Moon. The instrument allows observations from visible light to the near infrared, with more than 40 filters available. For this image, only three of these filters were used.

Notes

[1] Although many of the stars captured here belong to IC 4651, most of the very brightest in the picture actually lie between us and the cluster and most of the faintest ones are more distant.

[2] This quantity is in fact much larger than the numbers quoted by previous studies which surveyed smaller regions, leaving out many of the cluster’s stars that lie further from its core.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world’s biggest eye on the sky".

Contacts

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Connect with ESO on social media

This is a translation of ESO Press Release eso1534.

Richard Hook | ESO-Media-Newsletter
Further information:
http://www.eso.org/public/unitedkingdom/news/eso1534/

Further reports about: Astronomie Chile ESO Milky Way Observatory Sibling astronomical observatory clusters visible light

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>