Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short movies stored in an atomic vapor

30.05.2012
The storage of light-encoded messages on film and compact disks and as holograms is ubiquitous---grocery scanners, Netflix disks, credit-card images are just a few examples.

And now light signals can be stored as patterns in a room-temperature vapor of atoms. Scientists at the Joint Quantum Institute (*) have stored not one but two letters of the alphabet in a tiny cell filled with rubidium (Rb) atoms which are tailored to absorb and later re-emit messages on demand. This is the first time two images have simultaneously been reliably stored in a non-solid medium and then played back.

In effect, this is the first stored and replayed atomic movie. Because the JQI researchers are able to store and replay two separate images, or "frames," a few micro-seconds apart, the whole sequence can qualify as a feat of cinematography. The new storage process was developed by Paul Lett and his colleagues, who publish their results in the latest issue of the journal Optics Express (**).

One young man was inspired by the lingo of the JQI paper, especially the storage of images in the atomic memory, and contrived a song which he performs on a YouTube video clip: http://www.youtube.com/watch?v=ChBZUuRVMsU

We don't yet need to store grocery barcodes in tiny vials of rubidium. The atomic method, however, will come into its own for storing and processing quantum information, where subtle issues of coherence and isolation from the outside world need to be addressed.

The atomic storage medium is a narrow cell some 20 centimeters long, which seems pretty large for a quantum device. That's how much room is needed to accommodate a quantum process called gradient echo memory (GEM). This useful protocol for storage was pioneered at the Australian National University just in the past few years. While many storage media try to cram as much information into as small a place as possible---whether on a magnetized strip or on a compact disk---in GEM an image is stored over the whole range of that 20-cm-long cell.
The image is stored in this extended way, by being absorbed in atoms at any one particular place in the cell, depending on whether those atoms are exposed to three carefully tailored fields: the electric field of the signal light, the electric field of another "control" laser pulse, and a magnetic field (adjusted to be different along the length of the cell) which makes the Rb atoms (each behaving like a magnet itself) precess about. When the image is absorbed into the atoms in the cell, the control beam is turned off. Because this process requires the simultaneous action of two particular photons---one putting the atom in an excited state, the other sending it back down to a slightly different ground state---it cannot easily be undone by atoms subsequently randomly emitting light and returning to the original ground state.

That's how the image is stored. Image readout occurs in a sort of reverse process. The magnetic field is flipped to a contrary orientation, the control beam turned back on, and the atoms start to precess in the opposite direction. Eventually those atoms reemit light, thus reconstituting the image pulse, which proceeds on its way out of the cell.

Having stored one image (the letter N), the JQI physicists then stored a second image, the letter T, before reading both letters back in quick succession. The two "frames" of this movie, about a microsecond apart, were played back successfully every time, although typically only about 8 percent of the original light was redeemed, a percentage that will improve with practice. According to Paul Lett, one of the great challenges in storing images this way is to keep the atoms embodying the image from diffusing away. The longer the storage time (measured so far to be about 20 microseconds) the more diffusion occurs. The result is a fuzzy image.

Paul Lett plans to link up these new developments in storing images with his previous work on squeezed light. "Squeezing" light is one way to partially circumvent the Heisenberg uncertainty principle governing the ultimate measurement limitations. By allowing a poorer knowledge of a stream of light---say the timing of the light, its phase---one gain a sharper knowledge of a separate variable---in this case the light's amplitude. This increased capability, at le ast for the one variable, allows higher precision in certain quantum measurements.

"The big thing here," said Lett, "is that this allows us to do images and do pulses (instead of individual photons) and it can be matched (hopefully) to our squeezed light source, so that we can soon try to store "quantum images" and make essentially a random access memory for continuous variable quantum information. The thing that really attracted us to this method---aside from its being pretty well-matched to our source of squeezed light---is that the ANU group was able to get 87% recovery efficiency from it - which is, I think, the best anyone has seen in any optical system, so it holds great promise for a quantum memory."

The lead author of the new Optics Express article, Quentin Glorieux, feels that the JQI image storage method represents a potentially important addition to the establishment of quantum networks, equipment which exploits quantum effects for computing, communications, and metrology. "It is very exciting because images and movies are familiar to everyone. We want to go to the quantum level. If we manage to store quantum information embedded in an image or maybe in multiple images, that could really hasten the advent of a quantum network/internet."

(*)The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

(**) "Temporally multiplexed storage of images in a gradient echo memory," by Quentin Glorieux, Jeremy B. Clark, Alberto M. Marino, Zhifan Zhou, Paul D. Lett, Optics Express Vol. 20, Iss. 11, pp. 12350� (2012). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-11-12350

Paul Lett, paul.lett@nist.gov, 301-975-6559 Quentin.glorieux@nist.gov

Phillip F. Schewe | EurekAlert!
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

nachricht View of the Earth in front of the Sun
19.06.2019 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>