Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shielded quantum bits

26.10.2018

A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. The researchers have found ways to shield electric and magnetic noise for a short time. This will make it possible to use spins as memory for quantum computers, as the coherence time is extended and many thousand computer operations can be performed during this interval. The study was published in the current issue of the journal “Physical Review Letters”.

The technological vision of building a quantum computer does not only depend on computer and information science. New insights in theoretical physics, too, are decisive for progress in the practical implementation. Every computer or communication device contains information embedded in physical systems.


Schematic representation of the new spin qubit consisting of four electrons (red) with their spins (blue) in their semiconductor environment (grey).

Copyright: Maximilian Russ/Guido Burkard

“In the case of a quantum computer, we use spin qubits, for example, to realize information processing”, explains Professor Guido Burkard, who carries out his research in cooperation with colleagues from Princeton University. The theoretical findings that led to the current publication were largely made by the lead author of the study, doctoral researcher Maximilian Russ from the University of Konstanz.

In the quest for the quantum computer, spin qubits and their magnetic properties are the centre of attention. To use spins as memory in quantum technology, they must be lined up, because otherwise they cannot be controlled specifically.

“Usually magnets are controlled by magnetic fields – like a compass needle in the Earth’s magnetic field’, explains Guido Burkard. “In our case the particles are extremely small and the magnets very weak, which makes it really difficult to control them”. The physicists meet this challenge with electric fields and a procedure in which several electrons, in this case four, form a quantum bit.

Another problem they have to face is the electron spins, which are rather sensitive and fragile. Even in solid bodies of silicon they react to external interferences with electric or magnetic noise. The current study focuses on theoretical models and calculations of how the quantum bits can be shielded from this noise – an important contribution to basic research for a quantum computer: If this noise can be shielded for even the briefest of times, thousands of computer operations can be carried out in these fractions of a second – at least theoretically.

The next step for the physicists from Konstanz will now be to work with their experimental colleagues towards testing their theory in experiments. For the first time, four instead of three electrons will be used in these experiments, which could, e.g., be implemented by the research partners in Princeton.

While the Konstanz-based physicists provide the theoretical basis, the collaboration partners in the US perform the experimental part. This research is not the only reason why Konstanz is now on the map for qubit research. This autumn, for example, Konstanz attracted the internationally leading scientific community in this field for the “4th School and Conference on Based Quantum Information Processing”.

Key facts:
• Guido Burkard and his team of physicist at the University of Konstanz publish a theoretical concept to realize the processing of quantum information. The study was published in the current issue of the renowned journal “Physical Review Letters”.
• Link to the original publication:
https://journals.aps.org/prl/accepted/cf071Y52H8314171f2e801d42078646e42f9e53aa
DOI: https://doi.org/10.1103/PhysRevLett.121.177701
• In theoretical models and calculations the study shows how quantum bits can be shielded from magnetic and electronic noise. The new findings contribute to basic research for a quantum computer.
• Shielding the electric or magnetic noise results in an extended coherence time of spin qubits and thus provides the potential to carry out numerous computer operations.
• Konstanz research on spin qubits is carried out in collaboration with Princeton University. The new findings can now be tested in experiments.
• Further links:
https://www.uni-konstanz.de/spinqubits
https://theorie.physik.uni-konstanz.de/burkard/
http://pettagroup.princeton.edu/

Image:
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2018/Bilder/Geschuetzte_Quan...
Caption: Schematic representation of the new spin qubit consisting of four electrons (red) with their spins (blue) in their semiconductor environment (grey).
Copyright: Maximilian Russ/Guido Burkard

Contact
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>