Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on light absorption: titanium dioxide unveiled

13.04.2017

MPSD scientists have uncovered the hidden properties of titanium dioxide, one of the most promising materials for light-conversion technology.

The anatase crystal form of Titanium dioxide (TiO₂) is one of the most promising materials for photovoltaic and photocatalytic applications nowadays. Despite years of studies on the conversion of light absorbed by anatase TiO₂, into electrical charges, the very nature of its fundamental electronic and optical properties remained still unknown.


Lattice structure of anatase TiO2 with a graphical representation of the 2D exciton that is generated by the absorption of light. This 2D exciton is the lowest energy excitation of the material.

Scientists from the MPSD (Max Planck Institute for the Structure and Dynamics of Matter) at CFEL (Center for Free-Electron Laser Science) in Hamburg, together with their international partners at EPFL, Lausanne used a combination of cutting-edge steady-state and ultrafast spectroscopic techniques, as well as theoretical simulation tools to elucidate these fundamental properties of anatase TiO₂. Their work is published in Nature Communications.

Anatase TiO₂ is involved in a wide range of applications, ranging from photovoltaics and photocatalysis to self-cleaning glasses, and water and air purification, all of which are based on the absorption of light and its subsequent conversion into electrical charges. Given its widespread use in various applications, TiO₂ has been one of the most studied materials in the twentieth century, both experimentally and theoretically. Paradoxically, the very nature of what it is that actually absorbs light was unclear!

When light is shined on a semiconductor material, either free negative charges (electrons), positive charges (holes) or bound electron-hole pairs (excitons) are generated. Excitons can transport both energy and charge and are the basis of an entire field of next-generation electronics, called “excitonics”. So far we have lacked the ability to clearly identify the nature and properties of the physical object that absorbs light and characterizes the properties of TiO₂.

The group of Prof. Angel Rubio at the Theory Department of the MPSD along with its international collaborations have solved this problem using a combination of state-of-the-art first-principles theoretical tools along with cutting-edge experimental methods: steady-state angle-resolved photoemission spectroscopy (ARPES), which maps the energetics of the electrons (band-structure) along the different axis in the solid; and spectroscopic ellipsometry, which determines the macroscopic optical parameters (dielectric constant, etc.) of the solid with precision and ultrafast two-dimensional deep-ultraviolet spectroscopy, which is for the first time used in the study of materials. They discovered that the threshold of the absorption spectrum is due to a strongly bound exciton, which exhibits two remarkable novel properties:

a) it is confined on a 2-dimensional (2D) plane of the 3-dimensional lattice of the material. This is the first such case ever reported;

b) this 2D exciton is stable at room temperature and robust against defects, being present in any type of TiO₂-single crystals, thin films, and even nanoparticles used in devices.

This “immunity” of the exciton to long-range structural disorder and defects implies that it can store the incoming energy, in the form of light, and guide it at the nanoscale in a selective way. This promises a huge improvement compared to current technology, in which the conventional excitation schemes are extremely inefficient because the absorbed light energy is not stored but dissipated as heat to the crystal lattice. “The use of cutting-edge experimental techniques and theory allows us not only to understand but also design and create new, even more efficient materials for energy applications” says Adriel Domínguez.

Furthermore, the exciton parameters can be tuned by a variety of external and internal stimuli (temperature, pressure, excess electron density), promising a powerful, accurate and cheap detection scheme for sensors with an optical read-out. “Given the cheap and easy to fabricate anatase TiO₂ materials, these findings are crucial for such applications and beyond, to know how electrical charges are generated after light is absorbed”, says Prof. Majed Chergui from EPFL “These charges are the key players in solar energy conversion and photocatalysis.” Prof. Angel Rubio emphasizes that this sort of studies, resulting from the close collaboration between theoretical and experimental groups, are essential in order to unveil the microscopic origin of the light-energy conversion and energy transfer processes in materials of relevance for photovoltaic and photocatalytic applications and for the design of new artificial photosynthetic inorganic materials. “We’ll continue working with our international partners in EPFL in Lausanne to understand, even better, how this kind of bulk materials as well as many other low-dimensional oxide nanostructures behave when driven out of equilibrium by external stimuli such as light” he finalizes.

This work was carried out in a collaboration of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) with the EPFL’s Lausanne Centre for Ultrafast Science (LACS and the Institute of Physics (IPHYS), the University of Fribourg, the Università Campus Bio-Medico di Roma, the Center for Life Nano Science in Università di Roma “La Sapienza”, and the Universidad del Pais Vasco. It was funded by the Swiss National Science foundation (SNSF; NCCR:MUST), the European Research Council Advanced Grants “DYNAMOX” and “Qspec-Newmat”, Grupos Consolidados del Gobierno Vasco and the Austrian Science Fund.

Publication:
E. Baldini, L. Chiodo, A. Dominguez, M. Palummo, S. Moser, M. Yazdi-Rizi, G. Auböck, B.P.P. Mallett, H. Berger, A. Magrez, C. Bernhard, M. Grioni, A. Rubio, M. Chergui
Strongly bound excitons in anatase TiO2 single crystals and nanoparticles
Nature Communications Nature Communications 8, Article number: 13 (2017)

Weitere Informationen:

http://www.mpsd.mpg.de/399248/2017-04-Baldini-Rubio MPSD Research News including Contacts
http://www.mpsd.mpg.de/en/research/theo Theory Department of Prof. Angel Rubio
http://dx.doi.org/doi:10.1038/s41467-017-00016-6 Original Publication

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht Tel Aviv University-led team discovers new way supermassive black holes are 'fed'
15.01.2019 | American Friends of Tel Aviv University

nachricht Arbitrary quantum channel simulation for a superconducting qubit
14.01.2019 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>