Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaken, not stirred: Control Over Complex Systems Consisting of Many Quantum Particles

05.06.2014

At TU Vienna, a new method was developed to utilize quantum mechanical vibrations for high precision measurements. The well-known concept of the Ramsey interferometer is applied to a complex multi particle system consisting of hundreds of atoms.

Sometimes quantum particles behave like waves. This phenomenon is often used for high precision measurements, for instance in atomic clocks. Usually, only the wave properties of single particles play a role, but now researchers at the Vienna Center for Quantum Science and Technology, Vienna University of Technology have succeeded in quantum mechanically controlling hundreds of Rubidium atoms of an ultracold Bose-Einstein-condensate by shaking it in just the right way. Now, not only internal states of atoms can be used for interferometric measurements, but also the collective motional state of all particles.


Shaken: The time evolution of the vibration of the condensate

Superpositions of Different States
According to quantum theory, some physical quantities can only have certain discrete values. If, for instance, the energy of an electron inside an atom is measured, it is always found in special energy states – other energy values are just not allowed. It is similar with the motion of particles, if they are confined to small spaces.

“We catch hundreds of Rubidium atoms in a magnetic trap and cool them so that they form an ultracold Bose-Einstein condensate”, says Professor Jörg Schmiedmayer from the Institute for Atomic and Subatomic Physics at the Vienna University of Technology. “This Bose-Einstein-condensate moves as a gigantic matter wave.” The laws of quantum physics, however, do not permit every kind of motion, but only a certain set of possible motion waves.

Different Wave States
“It is a bit like blowing a flute”, says Sandrine van Frank. “When you blow it, a sound wave is created. If you blow it harder, you can produce a high-pitched overtone.” In quantum physics, however, different states can be excited at the same time. With a precisely tailored electromagnetic pulse, developed in collaboration with Prof. Tommaso Calarco of the Institute for Quantum Information at the Univ. Ulm, the Bose-Einstein condensate can be shaken, so that it does not only occupy one of the possible motion states, but two at the same time.

Such a superposition of states is something quite normal in quantum physics. The amazing thing is that a system with hundreds of atoms and many degrees of freedom – in quantum terms something incredibly huge – can be prepared in such a superposition state. Usually, quantum superpositions are extremely fragile. The larger the object, the easier it is to destroy the quantum properties of a superposition of allowed quantum states – a phenomenon called “decoherence”. Today, decoherence is considered to be the hardest problem for the development of new quantum technologies such as the Quantum Computer.

“After we have shaken the condensate with the pulse, it performs(exhibits) two different vibrational motions at the same time”, says van Frank. “After a while, we shake the condensate a second time, recombining the two superimposed motions.” Which of the two possible kinds of motion prevails in the end depends on the time delay between the two pulses and on the quantum phase of the superposition. Such a sequence of pulses is known as “Ramsey sequence” and is used for high-precision measurements in many areas. Now this technique was successfully transferred to the many-particle states of a Bose-Einstein condensate.

Just the Right Kick
In order to control the system, it was crucial to find exactly the right kind of pulse with which the condensate has to be shaken. It is supposed to enable a transition between the two vibration states that should be superimposed, but it should not be able to create any other possible states. Excluding all the other states turned out to be crucial for suppressing the unwanted decoherence effect.

“Our result proves that vibrational states of hundreds of atoms can be used for quantum experiments”, says Schmiedmayer. These states can be used to store information, and one day maybe even to do calculations. The remarkable stability of these states also gives insight into decoherence phenomena of large systems, consisting of many particles – an extremely fruitful field of research. In a next step, not only vibrations but also rotation states of the Bose-Einstein condensate will be studied. In the quantum world, both  are possible at the same time: shaken AND stirred.

The work has now been published in the journal “Nature Communications”. The team at the Vienna University of Technology was supported by researchers from Hamburg University and Ulm University.
Nature Communications 5,  4009
doi:10.1038/ncomms5009


Additional Information:
Prof. Jörg Schmiedmayer
Institute of Atomic and Subatomic Phyisics,
Vienna Center for Quantum Science and Technology (VCQ)
Vienna University of Technology
Stadionallee 2, 1020 Wien
+43 (1) 58801 141888
schmiedmayer@AtomChip.org

Prof. Thorsten Schumm
Institute of Atomic and Subatomic Phyisics,
Vienna Center for Quantum Science and Technology (VCQ)
Vienna University of Technology
Stadionallee 2, 1020 Wien
T: +43-1-58801-141896
thorsten.schumm@tuwien.ac.at

Sandrine van Frank, MSc
Institute of Atomic and Subatomic Phyisics,
Vienna Center for Quantum Science and Technology (VCQ)
Vienna University of Technology
Stadionallee 2, 1020 Wien
T: +43-1-58801-141889
sandrine.frank@tuwien.ac.at

florian.aigner@tuwien.ac.at

Florian Aigner | Eurek Alert!
Further information:
http://www.tuwien.ac.at/en/news/news_detail/article/8820/

Further reports about: Atomic Bose-Einstein Quantum Rubidium Subatomic Technology energy

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>