Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaken, not stirred: Control Over Complex Systems Consisting of Many Quantum Particles

05.06.2014

At TU Vienna, a new method was developed to utilize quantum mechanical vibrations for high precision measurements. The well-known concept of the Ramsey interferometer is applied to a complex multi particle system consisting of hundreds of atoms.

Sometimes quantum particles behave like waves. This phenomenon is often used for high precision measurements, for instance in atomic clocks. Usually, only the wave properties of single particles play a role, but now researchers at the Vienna Center for Quantum Science and Technology, Vienna University of Technology have succeeded in quantum mechanically controlling hundreds of Rubidium atoms of an ultracold Bose-Einstein-condensate by shaking it in just the right way. Now, not only internal states of atoms can be used for interferometric measurements, but also the collective motional state of all particles.


Shaken: The time evolution of the vibration of the condensate

Superpositions of Different States
According to quantum theory, some physical quantities can only have certain discrete values. If, for instance, the energy of an electron inside an atom is measured, it is always found in special energy states – other energy values are just not allowed. It is similar with the motion of particles, if they are confined to small spaces.

“We catch hundreds of Rubidium atoms in a magnetic trap and cool them so that they form an ultracold Bose-Einstein condensate”, says Professor Jörg Schmiedmayer from the Institute for Atomic and Subatomic Physics at the Vienna University of Technology. “This Bose-Einstein-condensate moves as a gigantic matter wave.” The laws of quantum physics, however, do not permit every kind of motion, but only a certain set of possible motion waves.

Different Wave States
“It is a bit like blowing a flute”, says Sandrine van Frank. “When you blow it, a sound wave is created. If you blow it harder, you can produce a high-pitched overtone.” In quantum physics, however, different states can be excited at the same time. With a precisely tailored electromagnetic pulse, developed in collaboration with Prof. Tommaso Calarco of the Institute for Quantum Information at the Univ. Ulm, the Bose-Einstein condensate can be shaken, so that it does not only occupy one of the possible motion states, but two at the same time.

Such a superposition of states is something quite normal in quantum physics. The amazing thing is that a system with hundreds of atoms and many degrees of freedom – in quantum terms something incredibly huge – can be prepared in such a superposition state. Usually, quantum superpositions are extremely fragile. The larger the object, the easier it is to destroy the quantum properties of a superposition of allowed quantum states – a phenomenon called “decoherence”. Today, decoherence is considered to be the hardest problem for the development of new quantum technologies such as the Quantum Computer.

“After we have shaken the condensate with the pulse, it performs(exhibits) two different vibrational motions at the same time”, says van Frank. “After a while, we shake the condensate a second time, recombining the two superimposed motions.” Which of the two possible kinds of motion prevails in the end depends on the time delay between the two pulses and on the quantum phase of the superposition. Such a sequence of pulses is known as “Ramsey sequence” and is used for high-precision measurements in many areas. Now this technique was successfully transferred to the many-particle states of a Bose-Einstein condensate.

Just the Right Kick
In order to control the system, it was crucial to find exactly the right kind of pulse with which the condensate has to be shaken. It is supposed to enable a transition between the two vibration states that should be superimposed, but it should not be able to create any other possible states. Excluding all the other states turned out to be crucial for suppressing the unwanted decoherence effect.

“Our result proves that vibrational states of hundreds of atoms can be used for quantum experiments”, says Schmiedmayer. These states can be used to store information, and one day maybe even to do calculations. The remarkable stability of these states also gives insight into decoherence phenomena of large systems, consisting of many particles – an extremely fruitful field of research. In a next step, not only vibrations but also rotation states of the Bose-Einstein condensate will be studied. In the quantum world, both  are possible at the same time: shaken AND stirred.

The work has now been published in the journal “Nature Communications”. The team at the Vienna University of Technology was supported by researchers from Hamburg University and Ulm University.
Nature Communications 5,  4009
doi:10.1038/ncomms5009


Additional Information:
Prof. Jörg Schmiedmayer
Institute of Atomic and Subatomic Phyisics,
Vienna Center for Quantum Science and Technology (VCQ)
Vienna University of Technology
Stadionallee 2, 1020 Wien
+43 (1) 58801 141888
schmiedmayer@AtomChip.org

Prof. Thorsten Schumm
Institute of Atomic and Subatomic Phyisics,
Vienna Center for Quantum Science and Technology (VCQ)
Vienna University of Technology
Stadionallee 2, 1020 Wien
T: +43-1-58801-141896
thorsten.schumm@tuwien.ac.at

Sandrine van Frank, MSc
Institute of Atomic and Subatomic Phyisics,
Vienna Center for Quantum Science and Technology (VCQ)
Vienna University of Technology
Stadionallee 2, 1020 Wien
T: +43-1-58801-141889
sandrine.frank@tuwien.ac.at

florian.aigner@tuwien.ac.at

Florian Aigner | Eurek Alert!
Further information:
http://www.tuwien.ac.at/en/news/news_detail/article/8820/

Further reports about: Atomic Bose-Einstein Quantum Rubidium Subatomic Technology energy

More articles from Physics and Astronomy:

nachricht Data storage using individual molecules
17.12.2018 | Universität Basel

nachricht Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing
17.12.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>