Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SFU helps quantum computers move closer

08.06.2012
The quantum computer is a futuristic machine that could operate at speeds even more mind-boggling than the world’s fastest super-computers.
Research involving physicist Mike Thewalt of Simon Fraser University offers a new step towards making quantum computing a reality, through the unique properties of highly enriched and highly purified silicon.

Quantum computers right now exist pretty much in physicists’ concepts, and theoretical research. There are some basic quantum computers in existence, but nobody yet can build a truly practical one—or really knows how.

Such computers will harness the powers of atoms and sub-atomic particles (ions, photons, electrons) to perform memory and processing tasks, thanks to strange sub-atomic properties.

What Thewalt and colleagues at Oxford University and in Germany have found is that their special silicon allows processes to take place and be observed in a solid state that scientists used to think required a near-perfect vacuum.

And, using this “28Silicon” they have extended to three minutes—from a matter of seconds—the time in which scientists can manipulate, observe and measure the processes.

“It’s by far a record in solid-state systems,” Thewalt says. “If you’d asked people a few years ago if this was possible, they’d have said no. It opens new ways of using solid-state semi-conductors such as silicon as a base for quantum computing.

“You can start to do things that people thought you could only do in a vacuum. What we have found, and what wasn’t anticipated, are the sharp spectral lines (optical qualities) in the 28Silicon we have been testing. It’s so pure, and so perfect. There’s no other material like it.”

But the world is still a long way from practical quantum computers, he notes.

Quantum computing is a concept that challenges everything we know or understand about today’s computers.

Your desktop or laptop computer processes “bits” of information. The bit is a fundamental unit of information, seen by your computer has having a value of either “1” or “0”.

That last paragraph, when written in Word, contains 181 characters including spaces. In your home computer, that simple paragraph is processed as a string of some 1,448 “1”s and “0”s.

But in the quantum computer, the “quantum bit” (also known as a “qubit”) can be both a “1” and a “0”—and all values between 0 and 1—at the same time.

Says Thewalt: “A classical 1/0 bit can be thought of as a person being either at the North or South Pole, whereas a qubit can be anywhere on the surface of the globe—its actual state is described by two parameters similar to latitude and longitude.”

Make a practical quantum computer with enough qubits available and it could complete in minutes calculations that would take today’s super-computers years, and your laptop perhaps millions of years.

The work by Thewalt and his fellow researchers opens up yet another avenue of research and application that may, in time, lead to practical breakthroughs in quantum computing.

Their paper will be published Friday in Science ( http://www.sciencemag.org ).

Simon Fraser University: Engaging Students. Engaging Research. Engaging Communities

Don MacLachlan | EurekAlert!
Further information:
http://www.sfu.ca

More articles from Physics and Astronomy:

nachricht Researchers develop new lens manufacturing technique
21.05.2019 | Washington State University

nachricht Planetologists explain how the formation of the moon brought water to Earth
21.05.2019 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

22.05.2019 | Power and Electrical Engineering

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>