Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Serendipity in the research field of magnetism

21.04.2020

Scientists discover new light-matter interaction with which they can write nanometer-sized magnetic structures

A German-Chinese research team has discovered a new effect that for the first time enables the creation of extremely small magnetic structures, known as skyrmions, directly with an X-ray beam. The scientists have thus made it possible to write arbitrary magnetic patterns with the highest precision.


A bundled soft X-ray beam with a diameter of less than 50 nanometers writes numerous magnetic vortices, which together form the term "MPI-IS".

Picture credits: Alejandro Posada and Felix Groß

Stuttgart – In cooperation with Chinese researchers from the Chinese Academy of Sciences and others, German researchers from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart have for the first time ever created individual skyrmions in a magnetic layer using soft X-rays.

In numerous experiments, they have shown that a focused soft X-ray beam with a diameter of less than 50 nanometres can generate a vortex-like magnetic skyrmion of 100 nanometres – the smallest possible size. In so doing, the scientists are the first to discover that this interaction between light and matter exists.

Their research paper "Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination" was published in the renowned scientific journal Nature Communications in February. The project is a joint research effort between MPI-IS, the Chinese Academy of Sciences, the Songshan Lake Materials Laboratory in Guangdong, and Lanzhou University.

"We do not yet know how x-ray light writes magnetic structures in matter," says Dr. Joachim Gräfe, head of the Nanomagnonics and Magnetization Dynamics research group at the MPI-IS and one of the study’s lead authors.

"Since heat is not a factor in writing the skyrmions, here, it has to do with the X-ray beam itself and it's a resonant element-specific effect: we can write the atoms responsible for the magnetism directly." He and his team were thus able to write "MPI-IS", as shown in a picture (see attached image).

Skyrmions are three-dimensional structures that are 100 nanometres in size and occur in magnetic materials. They resemble small coils: elementary magnets known as spins that are arranged in closed vortex-like structures. Skyrmions are topologically protected, meaning that their shape is unchangeable. They are thus regarded as stable data storage devices.

Discovering a completely new effect is a stroke of luck that scientists experience only a few times over the course of their careers, if at all. "This is one of the most exciting skyrmion projects we have conducted in recent years," Gräfe continues. "Discovering this new effect was completely unexpected and surprising for us."

Thanks to this discovery, practically anyone can now write various skyrmion arrangements in magnetic layers with an X-ray beam. This will open up several completely new fields of research. The ability to write magnetic structures with pinpoint accuracy opens up many possibilities.

The results are particularly relevant for the development and production of skyrmion processors, which store information in skyrmions and move them for processing. These processors are considered very energy-efficient and less susceptible to interference.

However, this development can only take its course if skyrmions can be created precisely and accurately – and this is now possible for the first time. "Our goal is that X-rays will one day serve as a tool for determining or writing the arrangement of magnetic structures."

To make skyrmions visible, the researchers use a scanning transmission X-ray microscope: MAXYMUS is a high-resolution X-ray microscope weighing 1.8 tons. It is located at BESSY II, an 80-metre-wide synchrotron radiation source of the Helmholtz-Zentrum Berlin in Adlershof. MAXYMUS stands for "MAgnetic X-raY Micro- and UHV Spectroscope".

The microscope is like a camera: much like in a slow-motion film, it follows how the structure in materials changes to the size of only a few nanometres. The scanning X-ray microscope’s wide range of applications is what attracts many of the world's leading researchers. There are far more applications for MAXYMUS than its capacity allows.

“This shows how attractive working with the microscope is,” says Gräfe. “It is also great that MAXYMUS attracts many international cooperations and makes diverse joint projects possible.”


Figure: A bundled soft X-ray beam with a diameter of less than 50 nanometers writes numerous magnetic vortices, which together form the term "MPI-IS". Picture credits: Alejandro Posada and Felix Groß

Press Contact:
Linda Behringer
Max Planck Institut for Intelligent Systems, Stuttgart,
T: +49 711 689 3552
M: +49 151 2300 1111
linda.behringer@is.mpg.de

Wissenschaftliche Ansprechpartner:

Dr. Joachim Gräfe
Research Group Leader
Department Modern Magnetic Systems
+49 711 689-1852
graefe@is.mpg.de

Originalpublikation:

https://www.nature.com/articles/s41467-020-14769-0?utm_source=other&utm_medi...

Linda Behringer | Max-Planck-Institut für Intelligente Systeme
Further information:
http://www.is.mpg.de/news/serendipity-in-the-research-field-of-magnetism

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>