Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seasonal, year-long cycles seen on the Sun

09.04.2015

Our sun is constantly changing. It goes through cycles of activity - swinging between times of relative calm and times when frequent explosions on its surface can fling light, particles and energy out into space. This activity cycle peaks approximately every 11 years. New research shows evidence of a shorter time cycle as well, with activity waxing and waning over the course of about 330 days.

Understanding when to expect such bursts of solar activity is crucial to successfully forecast the sun's eruptions, which can drive solar storms at Earth. These space weather events can interfere with satellite electronics, GPS navigation, and radio communications. The quasi-annual variations in space weather seem to be driven by changes in bands of strong magnetic field that are present in each solar hemisphere, said researchers in a paper published on April 7, 2015, in Nature Communications.


Bands of magnetized solar material march toward the sun's equator. The way the bands in each hemisphere interact leads to a 330-day cycle of waxing and waning activity on the sun that can be as strong as the more well-studied 11-year solar cycle.

Credit: S. McIntosh

"What we're looking at here is a massive driver of solar storms," said Scott McIntosh, lead author of the paper and director of the High Altitude Observatory of the National Center for Atmospheric Research in Boulder, Colorado. "By better understanding how these activity bands form in the sun and cause these seasonal instabilities, we can greatly improve forecasts of space weather."

The new study is one of several by the research team to examine what creates the magnetic bands and how they influence solar cycles. McIntosh and his co-authors detected the bands by drawing on a host of NASA satellites and ground-based observatories that observe the sun and its output -- from the constant flow of particles in the solar wind to large explosions such as solar flares or giant eruptions of solar material called coronal mass ejections, or CMEs.

The scientists note that the changes in the magnetic field in the bands gives rise to a 330-day activity cycle on the sun that is observable but has often been downplayed and overlooked when trying to seek the cause of the sun's longer, 11-year cycle.

"People have not paid much attention to this nearly-annual cycle," said McIntosh. "But it's such a driver of space weather that we really do need to focus on it. Cycles over this time frame are observed in all sorts of output from the sun: the sun's radiance, the solar wind, solar flares, CMEs."

Magnetic band interaction can also help explain a puzzle first discovered in the 1960s: Why does the number of powerful solar flares and CMEs peak a year or more after the maximum number of sunspots? This lag is known as the Gnevyshev Gap, after the Soviet scientist who first noticed the pattern. The answer appears to also depend on two activity bands.

Having one band located in each solar hemisphere provides an opportunity for them to mix -- magnetic field from one band effectively leaking into the other -- creating more unstable active regions on the sun and leading to more flares and CMEs. In other papers, scientists have shown that this process happens only after the sunspot maximum.

In doing their analysis on band interaction the scientists noticed that the bands themselves undergo strong quasi-annual variations, taking place separately in both the northern and southern hemispheres. Those quasi-annual variations in magnetism could be almost as large in magnitude as those of the more familiar, approximately 11-year solar cycle, giving rise to the appearance of stormy seasons.

"The activity bands on the sun have very slow-moving waves that can expand and warp," said Robert Leamon, co-author on the paper at Montana State University in Bozeman and NASA Headquarters in Washington. "Sometimes this results in magnetic field leaking from one band to the other. In other cases, the warp drags magnetic field from deep in the solar interior and pushes it toward the surface."

The surges of magnetic fuel from the sun's interior can catastrophically destabilize the existing corona, the sun's outermost atmosphere. They are a driving force behind the most intense solar storms.

Researchers can turn to advanced computer simulations and focused observations to learn more about the influence of these bands on solar activity. McIntosh suggested that this could be assisted by a proposed network of satellites observing the sun, much as the global networks of satellites around Earth has significantly advanced terrestrial weather models since the 1960s.

"If you understand what the patterns of solar activity are telling you, you'll know whether we're in a stormy phase or quiet phase in each hemisphere," McIntosh said. "If we can combine these pieces of observational information with modeling efforts, then space weather forecast skill can go through the roof."

###

The research was funded by NASA and the National Science Foundation, which is NCAR's sponsor.

For more information on the sun's magnetic activity bands:

http://www.nasa.gov/content/goddard/researchers-discover-new-clues-to-determining-the-solar-cycle/

Susan Hendrix | EurekAlert!

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>