Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019

The Belle II detector got off to a successful start in Japan. Since March 25, 2019, the instrument has been measuring the first particle collisions, which are generated in the modernized SuperKEKB accelerator. The new duo produces more than 50 times the number of collisions compared to its predecessor. The huge increase in evaluable data means that there is not a greater chance of finding out why there is an imbalance between matter and anti-matter in the Universe.

In the Belle II experiment, electrons and their anti-particles, the positrons, are brought to collision. This results in the generation of B mesons, couples consisting of a quark and an anti-quark. During earlier experiments (Belle and BaBar), scientists were able to observe that B mesons and anti-B mesons decay at different speeds (1).


Model of the Belle II detector: Electrons and their antiparticles, the positrons, are accelerated in the SuperKEKB ring and collide in Belle II's core.

Credit: KEK/Belle II

This phenomenon is known as CP violation (2). It offers an orientation when it comes to the question of why the Universe contains almost no anti-matter - even though after the Big Bang, both forms of matter must have been present in equal quantities.

Will Belle II discover new physics?

"However, the asymmetry observed to date is too small to explain the lack of anti-matter," says Hans-Günther Moser from the Max Planck Institute for Physics. "That's why we're looking for a more powerful mechanism that has remained unknown to date that would burst the boundaries of the 'standard model of particle physics' that has been used to date. However, to find this new physics and to provide statistical evidence for it, physicists must collect and evaluate far more data than they have done to date."

With this task in mind, the former KEK accelerator and Belle - which were operational from 1999 to 2010 - have been fully modernized. They are now being run under the names Belle II and SuperKEKB. The key new development is the 40-fold increase in luminosity, the number of particle collisions per area unit.

For this purpose, scientists and technicians have significantly reduced the profile of the particle beam; at the same time, it will be possible to double the number of shot particle bunches in the future. The probability that the particles might actually hit each other is thus considerably increased. In this way, scientists will have 50 times the amount of data available for evaluation in the future.

High-precision recording of particle tracks

However, the additional amount of data presents major challenges when it comes to the quality of the analysis provided by the detector. After the particle collision, the B mesons decay by just 0.1 millimeters on an average flight. This means that the detectors have to work very quickly and precisely. This is ensured by a highly sensitive pixel vertex detector, a large part of which was developed and built at the Max Planck Institute for Physics and the semiconductor laboratory of the Max Planck Society. The detector has 8 million pixels overall, and delivers 50,000 images per second.

"Several special technologies are built into the pixel vertex detector," Moser explains. "When new particle packages are fed into the SuperKEKB, which initially generates a very large background, we can blind the detector for about 1 microsecond. This means that non-relevant signals can be blocked out." Also, the detector sensors are no thicker than a human hair, with widths of just 75 micrometers. The physicists hope that in this way, they can prevent particles from being scattered while passing through matter.

The start of the measurement operation will mark the end of a major construction project. For nine years, scientists and engineers have been working on the conversion and modernization of the detector. The run that has now begun will continue until 1st July 2019. The SuperKEKB and Belle II will restart in October 2019 after a brief pause for maintenance.

###

(1) In 2008, the Japanese professors Makoto Kobayashi and Toshihide Maskawa won the Nobel Prize for Physics for this discovery.

(2) Charge/Parity

(3) The pixel vertex detector was developed and built by 11 research institutions: Excellence Cluster Universe, DESY, Semiconductor Laboratory of the Max Planck Society, Ludwig-Maximilians-Universitaet Muenchen, Karlsruhe Institute for Technology, Max-Planck Institute for Physics, Technical University of Munich, University of Bonn, Giessen University, University of Goettingen, Heidelberg University.

Charge/Parity

The pixel vertex detector was developed and built by 11 research institutions: Excellence Cluster Universe, DESY, Semiconductor Laboratory of the Max Planck Society, Ludwig-Maximilians-Universitaet Muenchen, Karlsruhe Institute for Technology, Max-Planck Institute for Physics, Technical University of Munich, University of Bonn, Giessen University, University of Goettingen, Heidelberg University.

Contact:

Dr. Hans-Guenther Moser
Max Planck Institute for Physics
+49 89 32354-248
moser@mpp.mpg.de

Media Contact

Barbara Wankerl
barbara.wankerl@mpp.mpg.de
49-893-235-4292

http://www.mpg.de/151995/physik 

Barbara Wankerl | EurekAlert!
Further information:
https://www.mpp.mpg.de/en/what-s-new/news/detail/auf-der-suche-nach-der-verschwundenen-antimaterie-messungen-mit-belle-ii-erfolgreich-gestartet/

Further reports about: Belle II Max Planck Institute anti-matter detector semiconductor

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>