Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019

The Belle II detector got off to a successful start in Japan. Since March 25, 2019, the instrument has been measuring the first particle collisions, which are generated in the modernized SuperKEKB accelerator. The new duo produces more than 50 times the number of collisions compared to its predecessor. The huge increase in evaluable data means that there is not a greater chance of finding out why there is an imbalance between matter and anti-matter in the Universe.

In the Belle II experiment, electrons and their anti-particles, the positrons, are brought to collision. This results in the generation of B mesons, couples consisting of a quark and an anti-quark. During earlier experiments (Belle and BaBar), scientists were able to observe that B mesons and anti-B mesons decay at different speeds (1).


Model of the Belle II detector: Electrons and their antiparticles, the positrons, are accelerated in the SuperKEKB ring and collide in Belle II's core.

Credit: KEK/Belle II

This phenomenon is known as CP violation (2). It offers an orientation when it comes to the question of why the Universe contains almost no anti-matter - even though after the Big Bang, both forms of matter must have been present in equal quantities.

Will Belle II discover new physics?

"However, the asymmetry observed to date is too small to explain the lack of anti-matter," says Hans-Günther Moser from the Max Planck Institute for Physics. "That's why we're looking for a more powerful mechanism that has remained unknown to date that would burst the boundaries of the 'standard model of particle physics' that has been used to date. However, to find this new physics and to provide statistical evidence for it, physicists must collect and evaluate far more data than they have done to date."

With this task in mind, the former KEK accelerator and Belle - which were operational from 1999 to 2010 - have been fully modernized. They are now being run under the names Belle II and SuperKEKB. The key new development is the 40-fold increase in luminosity, the number of particle collisions per area unit.

For this purpose, scientists and technicians have significantly reduced the profile of the particle beam; at the same time, it will be possible to double the number of shot particle bunches in the future. The probability that the particles might actually hit each other is thus considerably increased. In this way, scientists will have 50 times the amount of data available for evaluation in the future.

High-precision recording of particle tracks

However, the additional amount of data presents major challenges when it comes to the quality of the analysis provided by the detector. After the particle collision, the B mesons decay by just 0.1 millimeters on an average flight. This means that the detectors have to work very quickly and precisely. This is ensured by a highly sensitive pixel vertex detector, a large part of which was developed and built at the Max Planck Institute for Physics and the semiconductor laboratory of the Max Planck Society. The detector has 8 million pixels overall, and delivers 50,000 images per second.

"Several special technologies are built into the pixel vertex detector," Moser explains. "When new particle packages are fed into the SuperKEKB, which initially generates a very large background, we can blind the detector for about 1 microsecond. This means that non-relevant signals can be blocked out." Also, the detector sensors are no thicker than a human hair, with widths of just 75 micrometers. The physicists hope that in this way, they can prevent particles from being scattered while passing through matter.

The start of the measurement operation will mark the end of a major construction project. For nine years, scientists and engineers have been working on the conversion and modernization of the detector. The run that has now begun will continue until 1st July 2019. The SuperKEKB and Belle II will restart in October 2019 after a brief pause for maintenance.

###

(1) In 2008, the Japanese professors Makoto Kobayashi and Toshihide Maskawa won the Nobel Prize for Physics for this discovery.

(2) Charge/Parity

(3) The pixel vertex detector was developed and built by 11 research institutions: Excellence Cluster Universe, DESY, Semiconductor Laboratory of the Max Planck Society, Ludwig-Maximilians-Universitaet Muenchen, Karlsruhe Institute for Technology, Max-Planck Institute for Physics, Technical University of Munich, University of Bonn, Giessen University, University of Goettingen, Heidelberg University.

Charge/Parity

The pixel vertex detector was developed and built by 11 research institutions: Excellence Cluster Universe, DESY, Semiconductor Laboratory of the Max Planck Society, Ludwig-Maximilians-Universitaet Muenchen, Karlsruhe Institute for Technology, Max-Planck Institute for Physics, Technical University of Munich, University of Bonn, Giessen University, University of Goettingen, Heidelberg University.

Contact:

Dr. Hans-Guenther Moser
Max Planck Institute for Physics
+49 89 32354-248
moser@mpp.mpg.de

Media Contact

Barbara Wankerl
barbara.wankerl@mpp.mpg.de
49-893-235-4292

http://www.mpg.de/151995/physik 

Barbara Wankerl | EurekAlert!
Further information:
https://www.mpp.mpg.de/en/what-s-new/news/detail/auf-der-suche-nach-der-verschwundenen-antimaterie-messungen-mit-belle-ii-erfolgreich-gestartet/

Further reports about: Belle II Max Planck Institute anti-matter detector semiconductor

More articles from Physics and Astronomy:

nachricht 127-year-old physics problem solved
22.08.2019 | Norwegian University of Science and Technology

nachricht Physicists create world's smallest engine
22.08.2019 | Trinity College Dublin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

OHIO professor Hla develops robust molecular propeller for unidirectional rotations

22.08.2019 | Life Sciences

127-year-old physics problem solved

22.08.2019 | Physics and Astronomy

Physicists create world's smallest engine

22.08.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>