Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SDO Spots Extra Energy in the Sun's Corona

28.07.2011
Like giant strands of seaweed some 32,000 miles high, material shooting up from the sun sways back and forth with the atmosphere. In the ocean, it's moving water that pulls the seaweed along for a ride; in the sun's corona, magnetic field ripples called Alfvén waves cause the swaying.

For years these waves were too difficult to detect directly, but NASA's Solar Dynamics Observatory (SDO) is now able to track the movements of this solar "seaweed" and measure how much energy is carried by the Alfvén waves. The research shows that the waves carry more energy than previously thought, and possibly enough to drive two solar phenomena whose causes remain points of debate: the intense heating of the corona to some 20 times hotter than the sun's surface and solar winds that blast up to 1.5 million miles per hour.


These jets, known as spicules, were captured in an SDO image on April 25, 2010. Combined with the energy from ripples in the magnetic field, they may contain enough energy to power the solar wind that streams from the sun toward Earth at 1.5 million miles per hour. Credit: NASA/SDO/AIA

"SDO has amazing resolution so you can actually see individual waves," says Scott McIntosh at the National Center for Atmospheric Research in Boulder, Colo. "Now we can see that instead of these waves having about 1000th the energy needed as we previously thought, it has the equivalent of about 1100W light bulb for every 11 square feet of the sun's surface, which is enough to heat the sun's atmosphere and drive the solar wind."

McIntosh published his research in a Nature article appearing on July 28. Alfvén waves, he says, are actually fairly simple. They are waves that travel up and down a magnetic field line much the way a wave travels up and down a plucked string. The material surrounding the sun -- electrified gas called plasma – moves in concert with magnetic fields. SDO can see this material in motion and so can track the Alfvén waves.

Alfvén waves are part of a much more complex system of magnetic fields and plasma surrounding the sun. Understanding that system could help answer general questions such as what initiates geomagnetic storms near Earth and more focused questions such as what causes coronal heating and speeds of the solar wind – a field of inquiry in which there are few agreed-upon answers.

"We know there are mechanisms that supply a huge reservoir of energy at the sun's surface," says space scientist Vladimir Airapetian at NASA's Goddard Space Flight Center in Greenbelt, Md. "This energy is pumped into magnetic field energy, carried up into the sun's atmosphere and then released as heat." But determining the details of this mechanism has long been debated. Airapetian points out that a study like this confirms Alfvén waves may be part of that process, but that even with SDO we do not yet have the imaging resolution to prove it definitively.

When the waves were first observed in 2007 (more than six decades after being hypothesized by Hannes Alfvén in 1942), it was clear that they could in theory carry energy up from the sun's surface to its atmosphere. However, the 2007 observations showed them to be too weak to contain the great amounts of energy needed to heat the corona so dramatically.

This study says that those original numbers may have been underestimated. McIntosh, in collaboration with a team from Lockheed Martin, Norway's University of Oslo, and Belgium's Catholic University of Leuven, analyzed the great oscillations in movies from SDO's Atmospheric Imagine Assembly (AIA) instrument captured on April 25, 2010.

"Our code name for this research was 'The Wiggles,'" says McIntosh. "Because the movies really look like the sun was made of Jell-O wiggling back and forth everywhere. Clearly, these wiggles carry energy."

The team tracked the motions of this wiggly material spewing up -- in great jets known as spicules – as well as how much the spicules sway back and forth. They compared these observations to models of how such material would behave if undergoing motion from the Alfvén waves and found them to be a good match.

Going forward, they could analyze the shape, speed, and energy of the waves. The sinusoidal curves deviated outward at speeds of over 30 miles per second and repeated themselves every 150 to 550 seconds. These speeds mean the waves would be energetic enough to accelerate the fast solar wind and heat the quiet corona. The shortness of the repetition – known as the period of the wave – is also important. The shorter the period, the easier it is for the wave to release its energy into the coronal atmosphere, a crucial step in the process.

Earlier work with this same data also showed that the spicules achieved coronal temperatures of at least 1.8 million degrees Fahrenheit. Together the heat and Alfvén waves do seem to have enough energy to keep the roiling corona so hot. The energy is not quite enough to account for the largest bursts of radiation in the corona, however.

"Knowing there may be enough energy in the waves is only one half of the problem," says Goddard's Airapetian. "The next question is to find out what fraction of that energy is converted into heat. It could be all of it, or it could be 20 percent of it – so we need to know the details of that conversion."

In practice, that means studying more about the waves to understand just how they impart their energy into the surrounding atmosphere.

"We still don't perfectly understand the process going on, but we're getting better and better observations," says McIntosh. "The next step is for people to improve the theories and models to really capture the essence of the physics that's happening."

Karen C. Fox
NASA's Goddard Space Flight Center

Karen Fox | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Astrophysicists measure precise rotation pattern of sun-like stars for the first time
21.09.2018 | NYU Abu Dhabi

nachricht Halfway mark for NOEMA, the super-telescope under construction
20.09.2018 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>