Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Twist Sound with Metamaterials

26.02.2014

The World's First Acoustic Field Rotator, Described in Applied Physics Letters, May Help to Improve the Imaging Capabilities of Medical Ultrasound Devices

A Chinese-U.S. research team is exploring the use of metamaterials -- artificial materials engineered to have exotic properties not found in nature -- to create devices that manipulate sound in versatile and unprecedented ways.


J.Cheng/Nanjing University

3-D schematic of an designed acoustic field rotator, described in the journal Applied Physics Letters.

In the journal Applied Physics Letters, the team reports a simple design for a device, called an acoustic field rotator, which can twist wave fronts inside it so that they appear to be propagating from another direction.

"Numerous research efforts have centered on metamaterial-based devices with fascinating wave-control capabilities such as invisibility or illusion cloaks," said Jian-chun Cheng, a professor at the Institute of Acoustics, in the Department of Physics at Nanjing University. "An acoustic field rotator, however, which can be [considered] a special kind of illusion cloak with the capability of making an object acoustically appear like a rotated one, doesn't exist yet."

Field rotators for electromagnetic waves and liquid waves have already been demonstrated and show promise in their respective areas, but "another important type of classical wave, an acoustic wave, is a much more familiar part of our daily lives and could find applications in a variety of situations," Cheng noted.

Cheng and colleagues designed what they believe to be the first feasible acoustic rotator model and also fabricated a prototype to validate it.

"We were surprised to discover that by using metamaterials, acoustic waves can be rotated in a manner similar to their electromagnetic or liquid wave counterparts -- so sound has finally joined the club," Cheng said.

Another surprise the team discovered was that acoustic and electromagnetic rotators can be designed based on the same principles. In this case, the researchers used anisotropic metamaterials, which possess physical properties that differ along different directions.

"It's much easier to implement highly anisotropic acoustic metamaterials than electromagnetic ones, and an acoustic rotator may provide even better performance than its [electromagnetic] counterparts," said Cheng.

The team hopes their acoustic rotator, with its ability to freely manipulate acoustic wavefronts, will improve the operation of devices like medical ultrasound machines, which require the precise control of acoustic waves. The ability to rotate the sound waves could improve the contrast of ultrasound devices and allow them to image damaged tissue or diagnose diseases in ways they currently cannot. This is significant because ultrasound devices may be cheaper than other imaging modalities and do not use X-rays.

What's ahead for the team now that they've shown the possibility of building an acoustic rotator by exploiting acoustic metamaterials? "We've fabricated the simplest proof-of-concept device, which at this point can't serve as a mature and practical device, so it's worth further improvement and optimization," said Cheng.

In the future, acoustic rotators could "serve as useful building blocks for constructing more complex structures with richer acoustic manipulation functionalities, if properly combined with other kinds of components," he added.

The article, "Broadband field rotator based on acoustic metamaterials" by Xue Jiang, Bin Liang, Xin-ye Zou, Lei-lei Yin, and Jian-chun Cheng appears in the journal Applied Physics Letters (DOI: 10.1063/1.4866333). The article will be published online on February 25, 2014. After that date, it can be accessed at: http://tinyurl.com/pv78pok

The authors of this paper are affiliated with Nanjing University, the Chinese Academy of Sciences and the University of Illinois at Urbana-Champaign.

ABOUT THE JOURNAL
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Jason Socrates Bardi | newswise

Further reports about: AIP Sound acoustic anisotropic electromagnetic waves metamaterials properties waves

More articles from Physics and Astronomy:

nachricht ALMA discovers aluminum around young star
17.05.2019 | National Institutes of Natural Sciences

nachricht JQI researchers shed new light on atomic 'wave function'
17.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>