Scientists to throw light on how galaxies formed in the early Universe

The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to chart the distribution of stars and black holes from when the Universe was less than a billion years old to the present day. It will use Spitzer's Infrared Array Camera (IRAC) to make a very large map of the sky, capable of detecting extremely faint galaxies.

The combination of sensitivity of the equipment and the size of the area mapped by SERVS is unprecedented, making it likely to be the benchmark near-infrared survey for the next decade. The sensitivity means that the scientists will be able to detect moderately massive galaxies when the Universe was less than 8 per cent of its current age, while the wide area means that formation processes can be studied in the context of the underlying distribution of `dark' matter.

The sky regions in the survey were chosen to coincide with those that will be observed through deep imaging from the Herschel Space Observatory, the SCUBA-2 camera on the James Clerk Maxwell Telescope in Hawaii, and from the Vista Deep Extragalactic Observations survey (VIDEO). The combination of data from each of these facilities over a wide range in wavelength will give scientists a complete picture of how galaxies evolve, with no part of the formation process 'hidden' because of the effects of dust obscuration.

Dr Mark Lacy explains: “This mid-infrared survey fills a crucial gap in wavelength between the large near-infrared surveys being conducted by UK-based teams, and the far-infrared surveys to be conducted by Herschel and SCUBA-2. It will allow us to study the formation and evolution of massive galaxies like our own Milky Way in a truly representative volume of the Universe for the first time.”

Mark, who is currently based at the California Institute of Technology, joins the University of Southampton as a Reader in extragalactic astronomy in September 2009.

Co-investigators include Duncan Farrah and Seb Oliver from the University of Sussex, and Matt Jarvis at the University of Hertfordshire. Other UK institutions involved include Oxford, Cambridge, Imperial College, Portsmouth and Durham. In all there are 47 investigators, of which 25 are from the UK.

The project also represents a success for the newly-formed South East Physics Network (SEPNET) which includes the Universities of Southampton, Sussex, Portsmouth and Oxford.

Dr Matt Jarvis, University of Hertfordshire, adds: “The combination of SERVS and VIDEO will allow us to make the definitive study of how galaxies grow over the history of the Universe. However, the major improvement over past surveys is the combination of depth and area, allowing us to carry out these studies over both the densest and sparsest regions of the Universe. This will enable us to build up a picture of how galaxy formation and evolution is affected by the environment in which the galaxies reside.”

Media Contact

Sue Wilson alfa

More Information:

http://www.soton.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors